Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells.

Details

Ressource 1Download: serval:BIB_F10A13CD85F7.P001 (270.16 [Ko])
State: Public
Version: author
License: Not specified
It was possible to publish this article open access thanks to a Swiss National Licence with the publisher.
Serval ID
serval:BIB_F10A13CD85F7
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells.
Journal
Diabetologia
Author(s)
Abderrahmani A., Niederhauser G., Favre D., Abdelli S., Ferdaoussi M., Yang J.Y., Regazzi R., Widmann C., Waeber G.
ISSN
0012-186X
Publication state
Published
Issued date
2007
Peer-reviewed
Oui
Volume
50
Number
6
Pages
1304-1314
Language
english
Abstract
AIMS/HYPOTHESIS: We explored the potential adverse effects of pro-atherogenic oxidised LDL-cholesterol particles on beta cell function. MATERIALS AND METHODS: Isolated human and rat islets and different insulin-secreting cell lines were incubated with human oxidised LDL with or without HDL particles. The insulin level was monitored by ELISA, real-time PCR and a rat insulin promoter construct linked to luciferase gene reporter. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Prolonged incubation with human oxidised LDL particles led to a reduction in preproinsulin expression levels, whereas the insulin level was preserved in the presence of native LDL-cholesterol. The loss of insulin production occurred at the transcriptional levels and was associated with an increase in activator protein-1 transcriptional activity. The rise in activator protein-1 activity resulted from activation of c-Jun N-terminal kinases (JNK, now known as mitogen-activated protein kinase 8 [MAPK8]) due to a subsequent decrease in islet-brain 1 (IB1; now known as MAPK8 interacting protein 1) levels. Consistent with the pro-apoptotic role of the JNK pathway, oxidised LDL also induced a twofold increase in the rate of beta cell apoptosis. Treatment of the cells with JNK inhibitor peptides or HDL countered the effects mediated by oxidised LDL. CONCLUSIONS/INTERPRETATION: These data provide strong evidence that oxidised LDL particles exert deleterious effects in the progression of beta cell failure in diabetes and that these effects can be countered by HDL particles.
Keywords
Animals, Apoptosis, Cell Line, Diabetes Mellitus, Disease Progression, Enzyme Activation, Genes, Reporter, Humans, Insulin, Insulin-Secreting Cells, Lipoproteins, HDL, Lipoproteins, LDL, MAP Kinase Kinase 4, Male, Polymerase Chain Reaction, Promoter Regions, Genetic, RNA, Rats, Rats, Sprague-Dawley
Pubmed
Web of science
Open Access
Yes
Create date
17/11/2008 9:57
Last modification date
25/09/2019 7:11
Usage data