Maternal Calorie Restriction Induces a Transcriptional Cytoprotective Response in Embryonic Liver Partially Dependent on Nrf2.
Details
Serval ID
serval:BIB_EEC1C794C6E8
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Maternal Calorie Restriction Induces a Transcriptional Cytoprotective Response in Embryonic Liver Partially Dependent on Nrf2.
Journal
Antioxidants
ISSN
2076-3921 (Print)
ISSN-L
2076-3921
Publication state
Published
Issued date
17/11/2022
Peer-reviewed
Oui
Volume
11
Number
11
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Abstract
Calorie restriction is known to enhance Nrf2 signaling and longevity in adult mice, partially by reducing reactive oxygen species, but calorie restriction during pregnancy leads to intrauterine growth retardation. The latter is associated with fetal reprogramming leading to increased incidence of obesity, metabolic syndrome and diabetes in adult life. Transcription factor Nrf2 is a central regulator of the antioxidant response and its crosstalk with metabolic pathways is emerging. We hypothesized that the Nrf2 pathway is induced in embryos during calorie restriction in pregnant mothers.
From gestational day 10 up to day 16, 50% of the necessary mouse diet was provided to Nrf2 heterozygous pregnant females with fathers being of the same genotype. Embryos were harvested at the end of gestational day 16 and fetal liver was used for qRT-PCR and assessment of oxidative stress (OS).
Intrauterine calorie restriction led to upregulation of mRNA expression of antioxidant genes (Nqo1, Gsta1, Gsta4) and of genes related to integrated stress response (Chac1, Ddit3) in WT embryos. The expression of a key gluconeogenic (G6pase) and two lipogenic genes (Acacb, Fasn) was repressed in calorie-restricted embryos. In Nrf2 knockout embryos, the induction of Nqo1 and Gsta1 genes was abrogated while that of Gsta4 was preserved, indicating an at least partially Nrf2-dependent induction of antioxidant genes after in utero calorie restriction. Measures of OS showed no difference (superoxide radical and malondialdehyde) or a small decrease (thiobarbituric reactive substances) in calorie-restricted WT embryos.
Calorie restriction during pregnancy elicits the transcriptional induction of cytoprotective/antioxidant genes in the fetal liver, which is at least partially Nrf2-dependent, with a physiological significance that warrants further investigation.
From gestational day 10 up to day 16, 50% of the necessary mouse diet was provided to Nrf2 heterozygous pregnant females with fathers being of the same genotype. Embryos were harvested at the end of gestational day 16 and fetal liver was used for qRT-PCR and assessment of oxidative stress (OS).
Intrauterine calorie restriction led to upregulation of mRNA expression of antioxidant genes (Nqo1, Gsta1, Gsta4) and of genes related to integrated stress response (Chac1, Ddit3) in WT embryos. The expression of a key gluconeogenic (G6pase) and two lipogenic genes (Acacb, Fasn) was repressed in calorie-restricted embryos. In Nrf2 knockout embryos, the induction of Nqo1 and Gsta1 genes was abrogated while that of Gsta4 was preserved, indicating an at least partially Nrf2-dependent induction of antioxidant genes after in utero calorie restriction. Measures of OS showed no difference (superoxide radical and malondialdehyde) or a small decrease (thiobarbituric reactive substances) in calorie-restricted WT embryos.
Calorie restriction during pregnancy elicits the transcriptional induction of cytoprotective/antioxidant genes in the fetal liver, which is at least partially Nrf2-dependent, with a physiological significance that warrants further investigation.
Keywords
Keap1, Nfe2l2, embryo, gluconeogenesis, integrative stress response, lipogenesis, oxidative stress, reactive oxygen species
Pubmed
Web of science
Open Access
Yes
Create date
03/09/2023 20:25
Last modification date
03/10/2023 22:34