Assessment of network module identification across complex diseases.

Details

Ressource 1Download: s41592-019-0509-5.pdf (1715.33 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Serval ID
serval:BIB_EE926FD85D16
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Assessment of network module identification across complex diseases.
Journal
Nature methods
Author(s)
Choobdar S., Ahsen M.E., Crawford J., Tomasoni M., Fang T., Lamparter D., Lin J., Hescott B., Hu X., Mercer J., Natoli T., Narayan R., Subramanian A., Zhang J.D., Stolovitzky G., Kutalik Z., Lage K., Slonim D.K., Saez-Rodriguez J., Cowen L.J., Bergmann S., Marbach D.
Working group(s)
DREAM Module Identification Challenge Consortium
Contributor(s)
Aicheler F., Amoroso N., Arenas A., Azhagesan K., Baker A., Banf M., Batzoglou S., Baudot A., Bellotti R., Bergmann S., Boroevich K.A., Brun C., Cai S., Caldera M., Calderone A., Cesareni G., Chen W., Chichester C., Choobdar S., Cowen L., Crawford J., Cui H., Dao P., De Domenico M., Dhroso A., Didier G., Divine M., Del Sol A., Fang T., Feng X., Flores-Canales J.C., Fortunato S., Gitter A., Gorska A., Guan Y., Guénoche A., Gómez S., Hamza H., Hartmann A., He S., Heijs A., Heinrich J., Hescott B., Hu X., Hu Y., Huang X., Hughitt V.K., Jeon M., Jeub L., Johnson N.T., Joo K., Joung I., Jung S., Kalko S.G., Kamola P.J., Kang J., Kaveelerdpotjana B., Kim M., Kim Y.A., Kohlbacher O., Korkin D., Krzysztof K., Kunji K., Kutalik Z., Lage K., Lamparter D., Lang-Brown S., Le T.D., Lee J., Lee S., Lee J., Li D., Li J., Lin J., Liu L., Loizou A., Luo Z., Lysenko A., Ma T., Mall R., Marbach D., Mattia T., Medvedovic M., Menche J., Mercer J., Micarelli E., Monaco A., Müller F., Narayan R., Narykov O., Natoli T., Norman T., Park S., Perfetto L., Perrin D., Pirrò S., Przytycka T.M., Qian X., Raman K., Ramazzotti D., Ramsahai E., Ravindran B., Rennert P., Saez-Rodriguez J., Schärfe C., Sharan R., Shi N., Shin W., Shu H., Sinha H., Slonim D.K., Spinelli L., Srinivasan S., Subramanian A., Suver C., Szklarczyk D., Tangaro S., Thiagarajan S., Tichit L., Tiede T., Tripathi B., Tsherniak A., Tsunoda T., Türei D., Ullah E., Vahedi G., Valdeolivas A., Vivek J., von Mering C., Waagmeester A., Wang B., Wang Y., Weir B.A., White S., Winkler S., Xu K., Xu T., Yan C., Yang L., Yu K., Yu X., Zaffaroni G., Zaslavskiy M., Zeng T., Zhang J.D., Zhang L., Zhang W., Zhang L., Zhang X., Zhang J., Zhou X., Zhou J., Zhu H., Zhu J., Zuccon G.
ISSN
1548-7105 (Electronic)
ISSN-L
1548-7091
Publication state
Published
Issued date
09/2019
Peer-reviewed
Oui
Volume
16
Number
9
Pages
843-852
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Abstract
Many bioinformatics methods have been proposed for reducing the complexity of large gene or protein networks into relevant subnetworks or modules. Yet, how such methods compare to each other in terms of their ability to identify disease-relevant modules in different types of network remains poorly understood. We launched the 'Disease Module Identification DREAM Challenge', an open competition to comprehensively assess module identification methods across diverse protein-protein interaction, signaling, gene co-expression, homology and cancer-gene networks. Predicted network modules were tested for association with complex traits and diseases using a unique collection of 180 genome-wide association studies. Our robust assessment of 75 module identification methods reveals top-performing algorithms, which recover complementary trait-associated modules. We find that most of these modules correspond to core disease-relevant pathways, which often comprise therapeutic targets. This community challenge establishes biologically interpretable benchmarks, tools and guidelines for molecular network analysis to study human disease biology.
Pubmed
Create date
13/09/2019 18:00
Last modification date
25/01/2020 7:10
Usage data