Improving first responder forensic capabilities: On-site detection and quantification of explosive precursors using portable near-infrared spectroscopy and machine learning

Details

Ressource 1Download: 1-s2.0-S0379073825000167-main.pdf (3655.87 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Serval ID
serval:BIB_ECEBFE588324
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Improving first responder forensic capabilities: On-site detection and quantification of explosive precursors using portable near-infrared spectroscopy and machine learning
Journal
Forensic Science International
Author(s)
Prior Anne-Flore, Rochat Alexandre, Chevalley Jade, Coppey Florentin, Esseiva Pierre, Simoens Bart, Delémont Olivier
ISSN
0379-0738
Publication state
Published
Issued date
03/2025
Peer-reviewed
Oui
Volume
368
Pages
112378
Language
english
Keywords
Forensic science, Energetical materials, Decentralized architecture, Near-infrared, Machine learning, Hydrogen peroxide, Nitromethane, Nitric acid
Pubmed
Open Access
Yes
Create date
11/02/2025 19:52
Last modification date
12/02/2025 7:58
Usage data