Low total REE zircon formed in equilibrium with hornblende in granulitized eclogites: Implications for exhumation rates
Details
Request a copy Under indefinite embargo.
UNIL restricted access
State: Public
Version: author
License: Not specified
UNIL restricted access
State: Public
Version: author
License: Not specified
Serval ID
serval:BIB_EC70E0D5E415
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Low total REE zircon formed in equilibrium with hornblende in granulitized eclogites: Implications for exhumation rates
Journal
Earth and Planetary Science Letters
ISSN
0012-821X
Publication state
Published
Issued date
12/2024
Peer-reviewed
Oui
Volume
648
Pages
119084
Language
english
Abstract
Exhumation rates of high-pressure rocks are paramount in determining plate tectonic processes, which requires absolute chronology of metamorphic stages. U-Pb geochronology of zircon and other accessory minerals has proven successful in dating different metamorphic stages, thus constraining geological rates. A common strategy to link U-Pb ages to metamorphic stages uses rare earth element (REE) patterns in the dated minerals. In this study, the changes in the REE composition of accessory and rock-forming minerals in response to changing assemblages have been investigated in granulitized eclogites and gneisses from the Ama Drime Massif, central Himalaya. Phase equilibrium modelling shows that the eclogite-facies assemblage formed at 660–720 °C and 1.6–1.9 GPa (M1), was overprinted at high-pressure granulite-facies (M2) and then ultra-high temperature conditions of >900 °C and 0.8–1.1 GPa (M3) and finally re-equilibrated at conditions of 780–810 °C and 0.8–1.0 GPa (M4). In the countryrock orthogneisses, monazite records partial resetting during granulite-facies overprinting at 26–19 Ma and melt crystallisation at 16–13 Ma, supported by textures, mineral inclusions and trace elements. In the associated granulitized eclogites, zircon records only granulite/amphibolite facies overprinting at ∼14 Ma, and titanite and rutile record cooling to 580–630 °C at 12.5–9 Ma. Granulite/amphibolite facies zircon has a low total REE relative to the protolith zircon, primarily due to the growth of REE-rich hornblende (total REE 80–260 μg/g), which removed 67–92% of the REE from the system. The low total REE of granulite/amphibolite facies zircon is comparable to the flat HREE reported for garnet-rich eclogite-facies zircon, and distinguishing these zircon types requires quantitative mineral volume estimates and other criteria. These findings may imply slower exhumation rates for some eclogite-facies terranes, such as the Tso Morari Himalaya and Papua New Guinea, than previously reported.
Keywords
Zircon, Rare Earth elements, Eclogite, Amphibole, Exhumation rate, Himalaya
Web of science
Create date
15/11/2024 11:12
Last modification date
10/01/2025 7:04