Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images.

Details

Serval ID
serval:BIB_EC5BD1ED5E9E
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images.
Journal
Ieee Transactions On Medical Imaging
Author(s)
Cuadra M.B., Cammoun L., Butz T., Cuisenaire O., Thiran J.P.
ISSN
0278-0062 (Print)
ISSN-L
0278-0062
Publication state
Published
Issued date
2005
Volume
24
Number
12
Pages
1548-1565
Language
english
Notes
Publication types: Comparative Study ; Journal Article ; Validation StudiesPublication Status: ppublish
Abstract
This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.
Keywords
Adult, Algorithms, Artificial Intelligence, Brain/anatomy & histology, Computer Simulation, Female, Humans, Image Enhancement/methods, Image Interpretation, Computer-Assisted/methods, Imaging, Three-Dimensional/methods, Magnetic Resonance Imaging/methods, Models, Biological, Models, Statistical, Pattern Recognition, Automated/methods, Reproducibility of Results, Sensitivity and Specificity
Pubmed
Web of science
Create date
24/02/2012 14:27
Last modification date
20/08/2019 16:14
Usage data