Investigating the Role of PPARβ/δ in Retinal Vascular Remodeling Using Pparβ/δ-Deficient Mice.

Details

Ressource 1Download: 32575793_BIB_EB69EAB5C732.pdf (2842.97 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Serval ID
serval:BIB_EB69EAB5C732
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Investigating the Role of PPARβ/δ in Retinal Vascular Remodeling Using Pparβ/δ-Deficient Mice.
Journal
International journal of molecular sciences
Author(s)
Ho S.Y., Kwan Y.P., Qiu B., Tan A., Murray H.L., Barathi V.A., Tan N.S., Cheung CMG, Wong T.Y., Wahli W., Wang X.
ISSN
1422-0067 (Electronic)
ISSN-L
1422-0067
Publication state
Published
Issued date
20/06/2020
Peer-reviewed
Oui
Volume
21
Number
12
Pages
4403
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Abstract
Peroxisome proliferator-activated receptor (PPAR)β/δ is a member of the nuclear receptor superfamily of transcription factors, which plays fundamental roles in cell proliferation and differentiation, inflammation, adipogenesis, and energy homeostasis. Previous studies demonstrated a reduced choroidal neovascularization (CNV) in Pparβ/δ-deficient mice. However, PPARβ/δ's role in physiological blood vessel formation and vessel remodeling in the retina has yet to be established. Our study showed that PPARβ/δ is specifically required for disordered blood vessel formation in the retina. We further demonstrated an increased arteriovenous crossover and wider venous caliber in Pparβ/δ-haplodeficient mice. In summary, these results indicated a critical role of PPARβ/δ in pathological angiogenesis and blood vessel remodeling in the retina.
Keywords
Animals, Cells, Cultured, Choroidal Neovascularization/genetics, Disease Models, Animal, Haploinsufficiency, Humans, Lasers/adverse effects, Mice, Receptors, Cytoplasmic and Nuclear/deficiency, Retinal Vessels/cytology, Retinal Vessels/metabolism, Vascular Remodeling/genetics, PPARβ/δ, angiogenesis, arteriovenous crossover, blood vessel remodeling, pericytes, vessel caliber
Pubmed
Web of science
Open Access
Yes
Create date
03/07/2020 17:58
Last modification date
12/01/2022 7:14
Usage data