Functional Microdomains Control Glutamate Exocytosis from Astrocytes

Details

Serval ID
serval:BIB_EA45E552BD40
Type
Inproceedings: an article in a conference proceedings.
Publication sub-type
Abstract (Abstract): shot summary in a article that contain essentials elements presented during a scientific conference, lecture or from a poster.
Collection
Publications
Institution
Title
Functional Microdomains Control Glutamate Exocytosis from Astrocytes
Title of the conference
9th European Meeting on Glial Cells in Health and Disease
Author(s)
Bezzi P., Marchaland J., Cali C., Spagnuolo P., Gremion J., Voglmaier S., Sala C., Edwards R. H.
Address
Paris, France, September 08-12, 2009
ISBN
0894-1491
Publication state
Published
Issued date
2009
Peer-reviewed
Oui
Volume
57
Series
Glia
Pages
23
Language
english
Notes
Meeting Abstract
Abstract
The discovery that astrocytes possess a non-electrical form of excitability (Ca21-excitability) that leads to the release of chemical transmitters, an activity called ''gliotransmission'', indicates that these cells may have additional important roles in brain function. Elucidating the stimulus-secretion coupling leading to the exocytic release of chemical transmitters (such as glutamate, Bezzi et al., Nature Neurosci, 2004) may therefore clarify i) whether astrocytes represent in full a new class of secretory cells in the brain and ii) whether they can participate to the fast brain signaling in the brain. We have recently discovered the existence in astrocytes of functional sub-membrane microdomains of Ca21 release from the internal stores in response to mGluR5 activation (Marchaland et al., J of Neurosci., 2008). Such Ca21 microdomains control exocytosis of astrocytic glutamate signalling to neurons. Homer proteins are scaffold proteins controlling Ca21 signalling in different cellular microdomains, including dendritic spines in neurons (Sala et al., J of Neurosci., 2005). Thus, similarly to dendritic pines, Homer1 could be implicated in the coupling between astrocytic mGluR5 and IP3Rs on the ER. Here, by using a recently developed approach for studying vesicle recycling dynamics at synapses (Voglmaier et al., Neuron, 2006; Balaji and Ryan, PNAS, 2007) combined with epifluorescence and total internal reflection fluorescence (TIRF) imaging, we have investigated the involvement of Homer1 proteins in the Ca21-dependent stimulus-secretion coupling leading glutamate exocytosis of synaptic-like microvesicles (SLMVs) in astrocytes.
Web of science
Create date
03/12/2009 17:40
Last modification date
20/08/2019 17:12
Usage data