Effect of high- and low-molecular-weight low-substituted hydroxyethyl starch on blood coagulation during acute normovolemic hemodilution in pigs

Details

Serval ID
serval:BIB_DF16BCD32CFB
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Effect of high- and low-molecular-weight low-substituted hydroxyethyl starch on blood coagulation during acute normovolemic hemodilution in pigs
Journal
Anesthesiology
Author(s)
Thyes  C., Madjdpour  C., Frascarolo  P., Buclin  T., Burki  M., Fisch  A., Burmeister  M. A., Asmis  L., Spahn  D. R.
ISSN
0003-3022 (Print)
Publication state
Published
Issued date
12/2006
Volume
105
Number
6
Pages
1228-37
Notes
Journal Article
Research Support, Non-U.S. Gov't --- Old month value: Dec
Abstract
BACKGROUND: Hydroxyethyl starches (HES) with lower impact on blood coagulation but longer intravascular persistence are of clinical interest. The current study aimed to investigate in vivo the isolated effect of molecular weight on blood coagulation during progressive acute normovolemic hemodilution. METHODS: Twenty-four pigs were normovolemically hemodiluted up to a total exchange of 50 ml . kg . body weight of HES 650/0.42 or HES 130/0.42. Serial blood sampling was performed to measure HES plasma concentration and to assess blood coagulation. Concentration-effect relations were analyzed by linear regression, followed by the Student t test on regression parameters. RESULTS: Blood coagulation was increasingly compromised toward hypocoagulability by acute normovolemic hemodilution with both treatments (P < 0.01). Significantly greater impact on activated partial thromboplastin time (P = 0.04) and significantly stronger decrease of maximal amplitude (P = 0.04), angle alpha (P = 0.02), and coagulation index (P = 0.02) was seen after acute normovolemic hemodilution with HES 650/0.42 as compared with HES 130/0.42. Except for factor VIII (P = 0.04), no significant differences between both treatments were observed when relating antihemostatic effects to HES plasma concentrations (P > 0.05). A significantly lesser decrease of hemoglobin concentration has been found with HES 650/0.42 as compared with HES 130/0.42 (P < 0.01) in relation to HES plasma concentrations. CONCLUSION: High-molecular-weight HES (650/0.42) shows a moderately greater antihemostatic effect than low-molecular-weight HES (130/0.42) during acute normovolemic hemodilution. However, similar effects on hemostasis were observed with both treatments when observed antihemostatic effects were related to measured HES plasma concentrations. In addition, HES 650/0.42 may have a lower efficacy in immediately restoring plasma volume.
Keywords
Animals Blood Coagulation/*drug effects Blood Viscosity *Hemodilution Hetastarch/*chemistry/pharmacokinetics/*pharmacology Molecular Weight Partial Thromboplastin Time Plasma Substitutes/*chemistry/pharmacokinetics/*pharmacology Prothrombin Time Respiration, Artificial Swine Thrombelastography
Pubmed
Web of science
Create date
25/01/2008 11:45
Last modification date
20/08/2019 17:03
Usage data