Residual Partial Least Squares Learning: Brain Cortical Thickness Simultaneously Predicts Eight Non-pairwise-correlated Behavioural and Disease Outcomes in Alzheimer’s Disease

Details

Ressource 1Download: re-PLS_03172024.pdf (11184.99 [Ko])
State: Public
Version: author
License: CC BY-NC-ND 4.0
Serval ID
serval:BIB_DE5854C92A82
Type
Autre: use this type when nothing else fits.
Collection
Publications
Institution
Title
Residual Partial Least Squares Learning: Brain Cortical Thickness Simultaneously Predicts Eight Non-pairwise-correlated Behavioural and Disease Outcomes in Alzheimer’s Disease
Author(s)
Chén Oliver Y, Vu Duy Thanh, Diaz Christelle Schneuwly, Bodelet Julien, Phan Huy, Allali Gilles, Nguyen Viet-Dung, Cao Hengyi, He Xingru, Muller Yannick, Zhi Bangdong, Shou Haochang, Zhang Haoyu, He Wei, Wang Xiaojun, Munafo Marcus, Trung Nguyen Linh, Nagels Guy, Ryvlin Philippe, Pantaleo Giuseppe
Issued date
2024
Language
english
Abstract
Alzheimer's Disease (AD) is the leading cause of dementia. It results in cortical thickness changes and is associated with a decline in cognition and behaviour. Such decline affects multiple important day-to-day functions, including memory, language, orientation, judgment and problem-solving. Recent research has made important progress in identifying brain regions associated with single outcomes, such as individual AD status and general cognitive decline. The complex projection from multiple brain areas to multiple AD outcomes, however, remains poorly understood. This makes the assessment and especially the prediction of multiple AD outcomes - each of which may unveil an integral yet different aspect of the disease - challenging, particularly when some are not strongly correlated. Here, uniting residual learning, partial least squares (PLS), and predictive modelling, we develop a scalable, explainable, and reproducible method called the Residual Partial Least Squares Learning (the re-PLS Learning) to (1) chart the pathways between large-scale multivariate brain cortical thickness data (inputs) and multivariate disease and behaviour data (outcomes); (2) simultaneously predict multiple, non-pairwise-correlated outcomes; (3) control for confounding variables (e.g., age and gender) affecting both inputs and outcomes and the pathways in-between; (4) perform longitudinal AD disease status classification and disease severity prediction. We evaluate the performance of the proposed method against a variety of alternatives on data from AD patients, subjects with mild cognitive impairment (MCI), and cognitively normal individuals (n=1,196) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our results unveil pockets of brain areas in the temporal, frontal, sensorimotor, and cingulate areas whose cortical thickness may be respectively associated with declines in different cognitive and behavioural subdomains in AD. Finally, we characterise re-PLS' geometric interpretation and mathematical support for delivering meaningful neurobiological insights and provide an open software package (re-PLS) available at https://github.com/thanhvd18/rePLS.
Create date
17/03/2024 11:00
Last modification date
09/04/2024 7:14
Usage data