ResPred: A Privacy Preserving Location Prediction System Ensuring Location-based Service Utility

Details

Serval ID
serval:BIB_D928FEEEF483
Type
Inproceedings: an article in a conference proceedings.
Collection
Publications
Institution
Title
ResPred: A Privacy Preserving Location Prediction System Ensuring Location-based Service Utility
Title of the conference
Proceedings of the 4th International Conference on Geographical Information Systems Theory, Applications and Management
Author(s)
Moro A., Garbinato B.
Publisher
SCITEPRESS - Science and Technology Publications
Address
Funchal, Madeira, Portugal
ISBN
9789897582943
Publication state
Published
Issued date
2018
Volume
1
Pages
107-118
Language
english
Abstract
Location prediction and location privacy has retained a lot of attention recent years. Predicting locations is the next step of Location-Based Services (LBS) because it provides information not only based on where you are but where you will be. However, obtaining information from LBS has a price for the user because she must share all her locations with the service that builds a predictive model, resulting in a loss of privacy. In this paper we propose ResPred, a system that allows LBS to request location prediction about the user. The system includes a location prediction component containing a statistical location trend model and a location privacy component aiming at blurring the predicted locations by finding an appropriate tradeoff between LBS utility and user privacy, the latter being expressed as a maximum percentage of utility loss. We evaluate ResPred from a utility/privacy perspective by comparing our privacy mechanism with existing techniques by using real user locations.
Create date
20/07/2018 14:21
Last modification date
21/08/2019 5:11
Usage data