The AsiDNA™ decoy mimicking DSBs protects the normal tissue from radiation toxicity through a DNA-PK/p53/p21-dependent G1/S arrest.

Details

Serval ID
serval:BIB_D765584F53FC
Type
Article: article from journal or magazin.
Collection
Publications
Title
The AsiDNA™ decoy mimicking DSBs protects the normal tissue from radiation toxicity through a DNA-PK/p53/p21-dependent G1/S arrest.
Journal
NAR cancer
Author(s)
Sesink A., Becerra M., Ruan J.L., Leboucher S., Dubail M., Heinrich S., Jdey W., Petersson K., Fouillade C., Berthault N., Dutreix M., Girard P.M.
ISSN
2632-8674 (Electronic)
ISSN-L
2632-8674
Publication state
Published
Issued date
03/2024
Peer-reviewed
Oui
Volume
6
Number
1
Pages
zcae011
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Abstract
AsiDNA™, a cholesterol-coupled oligonucleotide mimicking double-stranded DNA breaks, was developed to sensitize tumour cells to radio- and chemotherapy. This drug acts as a decoy hijacking the DNA damage response. Previous studies have demonstrated that standalone AsiDNA™ administration is well tolerated with no additional adverse effects when combined with chemo- and/or radiotherapy. The lack of normal tissue complication encouraged further examination into the role of AsiDNA™ in normal cells. This research demonstrates the radioprotective properties of AsiDNA™. In vitro, AsiDNA™ induces a DNA-PK/p53/p21-dependent G1/S arrest in normal epithelial cells and fibroblasts that is absent in p53 deficient and proficient tumour cells. This cell cycle arrest improved survival after irradiation only in p53 proficient normal cells. Combined administration of AsiDNA™ with conventional radiotherapy in mouse models of late and early radiation toxicity resulted in decreased onset of lung fibrosis and increased intestinal crypt survival. Similar results were observed following FLASH radiotherapy in standalone or combined with AsiDNA™. Mechanisms comparable to those identified in vitro were detected both in vivo, in the intestine and ex vivo, in precision cut lung slices. Collectively, the results suggest that AsiDNA™ can partially protect healthy tissues from radiation toxicity by triggering a G1/S arrest in normal cells.
Keywords
Cancer Research, Oncology
Pubmed
Web of science
Open Access
Yes
Create date
05/04/2024 9:53
Last modification date
05/04/2024 9:53
Usage data