Le deep learning au service de la prédiction de l’orientation sexuelle dans l’espace public

Details

Serval ID
serval:BIB_D65F2A185B1C
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Le deep learning au service de la prédiction de l’orientation sexuelle dans l’espace public
Journal
Reseaux
Author(s)
Baya-Laffite Nicolas, Beaude Boris, Garrigues Jérémie
ISSN
0751-7971
Publication state
Published
Issued date
11/2018
Volume
n° 211
Number
5
Pages
137-172
Language
french
Abstract
L’alerte lancée en septembre 2017 à propos d’un algorithme susceptible de prédire l’orientation sexuelle des individus questionne le statut des « machines prédictives » et le rôle des sciences sociales dans de telles circonstances. Entre la revendication d’un retour à la physiognomonie à l’heure du deep learning, l’explication des performances à partir d’une théorie « biologisante » des origines de l’orientation sexuelle et l’annonce de la fin de la vie privée, cette recherche, menée sous la direction de Michal Kosinski, professeur de psychologie à Stanford, engage à ne pas laisser un tel débat au seul registre de l’éthique. Dans cet article, nous proposons d’interroger la pertinence de l’alerte lancée par Kosinski au regard de la controverse qu’elle a suscitée, tant elle se révèle pertinente pour examiner l’entrée des algorithmes prédictifs dans le débat public. Nous questionnons l’ambiguïté du statut de « lanceur d’alerte » que les auteurs assument pourtant explicitement, car l’examen critique de leur modèle prédictif révèle finalement son inaptitude à démontrer les origines hormonales prénatales de l’orientation sexuelle et à distinguer les orientations sexuelles des personnes dans l’espace public.
Create date
04/12/2019 18:20
Last modification date
05/12/2019 6:48
Usage data