Subnormothermic Ex Vivo Porcine Kidney Perfusion Improves Energy Metabolism: Analysis Using <sup>31</sup>P Magnetic Resonance Spectroscopic Imaging.
Details
Download: 36176724_BIB_D63BB4C604D7.pdf (2267.13 [Ko])
State: Public
Version: Final published version
License: CC BY-NC-ND 4.0
State: Public
Version: Final published version
License: CC BY-NC-ND 4.0
Serval ID
serval:BIB_D63BB4C604D7
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Subnormothermic Ex Vivo Porcine Kidney Perfusion Improves Energy Metabolism: Analysis Using <sup>31</sup>P Magnetic Resonance Spectroscopic Imaging.
Journal
Transplantation direct
ISSN
2373-8731 (Print)
ISSN-L
2373-8731
Publication state
Published
Issued date
10/2022
Peer-reviewed
Oui
Volume
8
Number
10
Pages
e1354
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Abstract
The ideal preservation temperature for donation after circulatory death kidney grafts is unknown. We investigated whether subnormothermic (22 °C) ex vivo kidney machine perfusion could improve kidney metabolism and reduce ischemia-reperfusion injury.
To mimic donation after circulatory death procurement, kidneys from 45-kg pigs underwent 60 min of warm ischemia. Kidneys were then perfused ex vivo for 4 h with Belzer machine perfusion solution UW at 22 °C or at 4 °C before transplantation. Magnetic resonance spectroscopic imaging coupled with LCModel fitting was used to assess energy metabolites. Kidney perfusion was evaluated with dynamic-contrast enhanced MRI. Renal biopsies were collected at various time points for histopathologic analysis.
Total adenosine triphosphate content was 4 times higher during ex vivo perfusion at 22 °C than at 4 °C perfusion. At 22 °C, adenosine triphosphate levels increased during the first hours of perfusion but declined afterward. Similarly, phosphomonoesters, containing adenosine monophosphate, were increased at 22 °C and then slowly consumed over time. Compared with 4 °C, ex vivo perfusion at 22 °C improved cortical and medullary perfusion. Finally, kidney perfusion at 22 °C reduced histological lesions after transplantation (injury score: 22 °C: 10.5 ± 3.5; 4 °C: 18 ± 2.25 over 30).
Ex vivo kidney perfusion at 22°C improved graft metabolism and protected from ischemia-reperfusion injuries upon transplantation. Future clinical studies will need to define the benefits of subnormothermic perfusion in improving kidney graft function and patient's survival.
To mimic donation after circulatory death procurement, kidneys from 45-kg pigs underwent 60 min of warm ischemia. Kidneys were then perfused ex vivo for 4 h with Belzer machine perfusion solution UW at 22 °C or at 4 °C before transplantation. Magnetic resonance spectroscopic imaging coupled with LCModel fitting was used to assess energy metabolites. Kidney perfusion was evaluated with dynamic-contrast enhanced MRI. Renal biopsies were collected at various time points for histopathologic analysis.
Total adenosine triphosphate content was 4 times higher during ex vivo perfusion at 22 °C than at 4 °C perfusion. At 22 °C, adenosine triphosphate levels increased during the first hours of perfusion but declined afterward. Similarly, phosphomonoesters, containing adenosine monophosphate, were increased at 22 °C and then slowly consumed over time. Compared with 4 °C, ex vivo perfusion at 22 °C improved cortical and medullary perfusion. Finally, kidney perfusion at 22 °C reduced histological lesions after transplantation (injury score: 22 °C: 10.5 ± 3.5; 4 °C: 18 ± 2.25 over 30).
Ex vivo kidney perfusion at 22°C improved graft metabolism and protected from ischemia-reperfusion injuries upon transplantation. Future clinical studies will need to define the benefits of subnormothermic perfusion in improving kidney graft function and patient's survival.
Pubmed
Web of science
Open Access
Yes
Create date
11/10/2022 13:10
Last modification date
25/01/2024 7:45