Attributable mortality of antibiotic resistance in gram-negative infections in the Netherlands: a parallel matched cohort study
Details
Serval ID
serval:BIB_D2A841C9F181
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Attributable mortality of antibiotic resistance in gram-negative infections in the Netherlands: a parallel matched cohort study
Journal
Clinical Microbiology and Infection
ISSN
1198-743X
ISSN-L
1198-743X
Publication state
Published
Issued date
05/2021
Peer-reviewed
Oui
Volume
27
Number
5
Pages
742-749
Language
english
Abstract
Antibiotic resistance in Gram-negative bacteria has been associated with increased mortality. This was demonstrated mostly for third-generation cephalosporin-resistant (3GC-R) Enterobacterales bacteraemia in international studies. Yet, the burden of resistance specifically in the Netherlands and created by all types of Gram-negative infection has not been quantified. We therefore investigated the attributable mortality of antibiotic resistance in Gram-negative infections in the Netherlands.
In eight hospitals, a sample of Gram-negative infections was identified between 2013 and 2016, and separated into resistant and susceptible infection cohorts. Both cohorts were matched 1:1 to non-infected control patients on hospital, length of stay at infection onset, and age. In this parallel matched cohort set-up, 30-day mortality was compared between infected and non-infected patients. The impact of resistance was then assessed by dividing the two separate risk ratios (RRs) for mortality attributable to Gram-negative infection.
We identified 1954 Gram-negative infections, of which 1190 (61%) involved Escherichia coli, 210 (11%) Pseudomonas aeruginosa, and 758 (39%) bacteraemia. Resistant Gram-negatives caused 243 infections (12%; 189 (78%) 3GC-R Enterobacterales, nine (4%) multidrug-resistant P. aeruginosa, no carbapenemase-producing Enterobacterales). Subsequently, we matched 1941 non-infected controls. After adjustment, point estimates for RRs comparing mortality between infections and controls were similarly higher than 1 in case of resistant infections and susceptible infections (1.42 (95% confidence interval 0.66-3.09) and 1.32 (1.06-1.65), respectively). By dividing these, the RR reflecting attributable mortality of resistance was calculated as 1.08 (0.48-2.41).
In the Netherlands, antibiotic resistance did not increase 30-day mortality in Gram-negative infections.
In eight hospitals, a sample of Gram-negative infections was identified between 2013 and 2016, and separated into resistant and susceptible infection cohorts. Both cohorts were matched 1:1 to non-infected control patients on hospital, length of stay at infection onset, and age. In this parallel matched cohort set-up, 30-day mortality was compared between infected and non-infected patients. The impact of resistance was then assessed by dividing the two separate risk ratios (RRs) for mortality attributable to Gram-negative infection.
We identified 1954 Gram-negative infections, of which 1190 (61%) involved Escherichia coli, 210 (11%) Pseudomonas aeruginosa, and 758 (39%) bacteraemia. Resistant Gram-negatives caused 243 infections (12%; 189 (78%) 3GC-R Enterobacterales, nine (4%) multidrug-resistant P. aeruginosa, no carbapenemase-producing Enterobacterales). Subsequently, we matched 1941 non-infected controls. After adjustment, point estimates for RRs comparing mortality between infections and controls were similarly higher than 1 in case of resistant infections and susceptible infections (1.42 (95% confidence interval 0.66-3.09) and 1.32 (1.06-1.65), respectively). By dividing these, the RR reflecting attributable mortality of resistance was calculated as 1.08 (0.48-2.41).
In the Netherlands, antibiotic resistance did not increase 30-day mortality in Gram-negative infections.
Keywords
Infectious Diseases, Microbiology (medical), General Medicine
Pubmed
Web of science
Open Access
Yes
Create date
30/07/2021 10:11
Last modification date
06/03/2024 13:09