Proton NMR of (15)N-choline metabolites enhanced by dynamic nuclear polarization.

Details

Serval ID
serval:BIB_D16FAB36AEF8
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Proton NMR of (15)N-choline metabolites enhanced by dynamic nuclear polarization.
Journal
Journal of the American Chemical Society
Author(s)
Sarkar R., Comment A., Vasos P.R., Jannin S., Gruetter R., Bodenhausen G., Hall H., Kirik D., Denisov V.P.
ISSN
1520-5126 (Electronic)
ISSN-L
0002-7863
Publication state
Published
Issued date
2009
Volume
131
Number
44
Pages
16014-16015
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov'tPublication Status: ppublish
Abstract
Chemical shifts of protons can report on metabolic transformations such as the conversion of choline to phosphocholine. To follow such processes in vivo, magnetization can be enhanced by dynamic nuclear polarization (DNP). We have hyperpolarized in this manner nitrogen-15 spins in (15)N-labeled choline up to 3.3% by irradiating the 94 GHz electron spin resonance of admixed TEMPO nitroxide radicals in a magnetic field of 3.35 T during ca. 3 h at 1.2 K. The sample was subsequently transferred to a high-resolution magnet, and the enhanced polarization was converted from (15)N to methyl- and methylene protons, using the small (2,3)J((1)H,(15)N) couplings in choline. The room-temperature lifetime of nitrogen polarization in choline, T(1)((15)N) approximately 200 s, could be considerably increased by partial deuteration of the molecule. This procedure enables studies of choline metabolites in vitro and in vivo using DNP-enhanced proton NMR.
Keywords
Choline/metabolism, Isotope Labeling, Kinetics, Magnetic Resonance Spectroscopy/methods, Magnetics, Nitrogen Isotopes, Protons, Spin Labels
Pubmed
Web of science
Create date
04/08/2010 15:28
Last modification date
20/08/2019 15:51
Usage data