Protein alterations in infiltrating ductal carcinomas of the breast as detected by nonequilibrium pH gradient electrophoresis and mass spectrometry.

Details

Serval ID
serval:BIB_CC1985825A21
Type
Article: article from journal or magazin.
Collection
Publications
Title
Protein alterations in infiltrating ductal carcinomas of the breast as detected by nonequilibrium pH gradient electrophoresis and mass spectrometry.
Journal
Journal of biomedicine & biotechnology
Author(s)
Kabbage M., Chahed K., Hamrita B., Guillier C.L., Trimeche M., Remadi S., Hoebeke J., Chouchane L.
ISSN
1110-7251 (Electronic)
ISSN-L
1110-7243
Publication state
Published
Issued date
2008
Peer-reviewed
Oui
Volume
2008
Pages
564127
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Abstract
Improvement of breast-cancer detection through the identification of potential cancer biomarkers is considered as a promising strategy for effective assessment of the disease. The current study has used nonequilibrium pH gradient electrophoresis with subsequent analysis by mass spectrometry to identify protein alterations in invasive ductal carcinomas of the breast from Tunisian women. We have identified multiple protein alterations in tumor tissues that were picked, processed, and unambiguously assigned identities by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). The proteins identified span a wide range of functions and are believed to have potential clinical applications as cancer biomarkers. They include glycolytic enzymes, molecular chaperones, cytoskeletal-related proteins, antioxydant enzymes, and immunologic related proteins. Among these proteins, enolase 1, phosphoglycerate kinase 1, deoxyhemoglobin, Mn-superoxyde dismutase, alpha-B-crystallin, HSP27, Raf kinase inhibitor protein, heterogeneous nuclear ribonucleoprotein A2/B1, cofilin 1, and peptidylprolyl isomerase A were overexpressed in tumors compared with normal tissues. In contrast, the IGHG1 protein, the complement C3 component C3c, which are two newly identified protein markers, were downregulated in IDCA tissues.
Keywords
Biomarkers, Tumor/chemistry, Breast Neoplasms/diagnosis, Breast Neoplasms/metabolism, Carcinoma, Ductal, Breast/diagnosis, Carcinoma, Ductal, Breast/metabolism, Electrophoresis/methods, Female, Humans, Hydrogen-Ion Concentration, Mass Spectrometry/methods, Middle Aged, Mutation, Neoplasm Proteins/chemistry
Pubmed
Web of science
Open Access
Yes
Create date
17/10/2023 10:12
Last modification date
20/10/2023 7:10
Usage data