Kinetics of atrial repolarization alternans in a free-behaving ovine model.
Details
Download: BIB_CAB6B52EE4A2.P001.pdf (1280.33 [Ko])
State: Public
Version: author
State: Public
Version: author
Secondary document(s)
Download: 22554055_Postprint.pdf (2730.56 [Ko])
State: Public
Version: author
State: Public
Version: author
Serval ID
serval:BIB_CAB6B52EE4A2
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Kinetics of atrial repolarization alternans in a free-behaving ovine model.
Journal
Journal of Cardiovascular Electrophysiology
ISSN
1540-8167 (Electronic)
ISSN-L
1045-3873
Publication state
Published
Issued date
2012
Peer-reviewed
Oui
Volume
23
Number
9
Pages
1003-1012
Language
english
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
Abstract
Kinetics of Atrial Repolarization Alternans.
INTRODUCTION: Repolarization alternans (Re-ALT), a beat-to-beat alternation in action potential repolarization, promotes dispersion of repolarization, wavebreaks, and reentry. Recently, Re-ALT has been shown to play an important role in the transition from rapid pacing to atrial fibrillation (AF) in humans. The detailed kinetics of atrial Re-ALT, however, has not been reported so far. We developed a chronic free-behaving ovine pacing model to study the kinetics of atrial Re-ALT as a function of pacing rate.
METHODS: Thirteen sheep were chronically implanted with 2 pacemakers for the recording of broadband right atrial unipolar electrograms and delivery of rapid pacing protocols. Beat-to-beat differences in the atrial T-wave apex amplitude as a measure of Re-ALT and activation time were analyzed at incremental pacing rates until the effective refractory period (ERP) defined as stable 2:1 capture.
RESULTS: Atrial Re-ALT appeared intermittently but without periodicity, and increased in amplitude as a function of pacing rate until ERP. Intermittent 2:1 atrial capture was observed at pacing cycle lengths 40 ms above ERP, and increased in duration as a function of pacing rate. Episodes of rapid pacing-induced AF were rare, and were preceded by Re-ALT or complex oscillations of atrial repolarization, but without intermittent capture.
CONCLUSION: We show in vivo that atrial Re-ALT developed and increased in magnitude with rate until stable 2:1 capture. In rare instances where capture failure did not occur, Re-ALT and complex oscillations of repolarization surged and preceded AF initiation. (J Cardiovasc Electrophysiol, Vol. 23, pp. 1003-1012, September 2012).
INTRODUCTION: Repolarization alternans (Re-ALT), a beat-to-beat alternation in action potential repolarization, promotes dispersion of repolarization, wavebreaks, and reentry. Recently, Re-ALT has been shown to play an important role in the transition from rapid pacing to atrial fibrillation (AF) in humans. The detailed kinetics of atrial Re-ALT, however, has not been reported so far. We developed a chronic free-behaving ovine pacing model to study the kinetics of atrial Re-ALT as a function of pacing rate.
METHODS: Thirteen sheep were chronically implanted with 2 pacemakers for the recording of broadband right atrial unipolar electrograms and delivery of rapid pacing protocols. Beat-to-beat differences in the atrial T-wave apex amplitude as a measure of Re-ALT and activation time were analyzed at incremental pacing rates until the effective refractory period (ERP) defined as stable 2:1 capture.
RESULTS: Atrial Re-ALT appeared intermittently but without periodicity, and increased in amplitude as a function of pacing rate until ERP. Intermittent 2:1 atrial capture was observed at pacing cycle lengths 40 ms above ERP, and increased in duration as a function of pacing rate. Episodes of rapid pacing-induced AF were rare, and were preceded by Re-ALT or complex oscillations of atrial repolarization, but without intermittent capture.
CONCLUSION: We show in vivo that atrial Re-ALT developed and increased in magnitude with rate until stable 2:1 capture. In rare instances where capture failure did not occur, Re-ALT and complex oscillations of repolarization surged and preceded AF initiation. (J Cardiovasc Electrophysiol, Vol. 23, pp. 1003-1012, September 2012).
Pubmed
Web of science
Create date
01/11/2012 19:43
Last modification date
20/08/2019 16:45