Evaluation of errors in alpine skiing video analysis

Details

Serval ID
serval:BIB_CA2FC39FCF3A
Type
Inproceedings: an article in a conference proceedings.
Publication sub-type
Abstract (Abstract): shot summary in a article that contain essentials elements presented during a scientific conference, lecture or from a poster.
Collection
Publications
Institution
Title
Evaluation of errors in alpine skiing video analysis
Title of the conference
Book of Abstracts, 14th Annual Congress of the European College of Sport Science
Author(s)
Chardonnens J., Favre J., Cattin S., Jolles B.M., Gremion G., Aminian K.
Address
Oslo, Norway, June 24-27, 2009
ISBN
978-82-502-0420-1
Publication state
Published
Issued date
2009
Editor
Loland S.,  K., Fasting K., Hallén J., Ommundsen Y., Roberts G., Tsolakidis E.
Pages
131-132
Language
english
Abstract
INTRODUCTION: Video records are widely used to analyze performance in alpine skiing at professional or amateur level. Parts of these analyses require the labeling of some movements (i.e. determining when specific events occur). If differences among coaches and differences for the same coach between different dates are expected, they have never been quantified. Moreover, knowing these differences is essential to determine which parameters reliable should be used. This study aimed to quantify the precision and the repeatability for alpine skiing coaches of various levels, as it is done in other fields (Koo et al, 2005).
METHODS: A software similar to commercialized products was designed to allow video analyses. 15 coaches divided into 3 groups (5 amateur coaches (G1), 5 professional instructors (G2) and 5 semi-professional coaches (G3)) were enrolled. They were asked to label 15 timing parameters (TP) according to the Swiss ski manual (Terribilini et al, 2001) for each curve. TP included phases (initiation, steering I-II),
body and ski movements (e.g. rotation, weighting, extension, balance). Three video sequences sampled at 25 Hz were used and one curve per video was labeled. The first video was used to familiarize the analyzer to the software. The two other videos, corresponding to slalom and giant slalom, were considered for the analysis. G1 realized twice the analysis (A1 and A2) at different dates and TP were randomized between both analyses. Reference TP were considered as the median of G2 and G3 at A1. The precision was defined as the RMS difference between individual TP and reference TP, whereas the repeatability was calculated as the RMS difference between individual TP at A1 and at A2.
RESULTS AND DISCUSSION: For G1, G2 and G3, a precision of +/-5.6 frames, +/-3.0 and +/-2.0 frames, was respectively obtained. These results showed that G2 was more precise than G1, and G3 more precise than G2, were in accordance with group levels. The repeatability for G1 was +/-3.1 frames. Furthermore, differences among TP precision were observed, considering G2 and G3, with largest differences of +/-5.9 frames for "body counter rotation movement in steering phase II", and of 0.8 frame for "ski unweighting in initiation phase".
CONCLUSION: This study quantified coach ability to label video in term of precision and repeatability. The best precision was obtained for G3 and was of +/-0.08s, which corresponds to +/-6.5% of the curve cycle. Regarding the repeatability, we obtained a result of +/-0.12s for G1, corresponding to +/-12% of the curve cycle. The repeatability of G2 and G3 are expected to be lower than the precision of G1 and the corresponding repeatability will be assessed soon. In conclusion, our results indicate that the labeling of video records is reliable for some TP, whereas caution is required for others.
REFERENCES
Koo S, Gold MD, Andriacchi TP. (2005). Osteoarthritis, 13, 782-789.
Terribilini M, et al. (2001). Swiss Ski manual, 29-46. IASS, Lucerne.
Create date
09/02/2010 19:46
Last modification date
20/08/2019 15:45
Usage data