Elastic membrane heterogeneity of living cells revealed by stiff nanoscale membrane domains.

Details

Serval ID
serval:BIB_C56D635DC857
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Elastic membrane heterogeneity of living cells revealed by stiff nanoscale membrane domains.
Journal
Biophysical journal
Author(s)
Roduit C., van der Goot F.G., De Los Rios P., Yersin A., Steiner P., Dietler G., Catsicas S., Lafont F., Kasas S.
ISSN
1542-0086
Publication state
Published
Issued date
2008
Peer-reviewed
Oui
Volume
94
Number
4
Pages
1521-1532
Language
english
Notes
Journal article --- Old month value: Nov 2
Abstract
Many approaches have been developed to characterize the heterogeneity of membranes in living cells. In this study, the elastic properties of specific membrane domains in living cells are characterized by atomic force microscopy. Our data reveal the existence of heterogeneous nanometric scale domains with specific biophysical properties. We focused on glycosylphosphatidylinositol (GPI)-anchored proteins, which play an important role in membrane trafficking and cell signaling under both physiological and pathological conditions and which are known to partition preferentially into cholesterol-rich microdomains. We demonstrate that these GPI-anchored proteins reside within domains that are stiffer than the surrounding membrane. In contrast, membrane domains containing the transferrin receptor, which does not associate with cholesterol-rich regions, manifest no such feature. The heightened stiffness of GPI domains is consistent with existing data relating to the specific condensation of lipids and the slow diffusion rates of lipids and proteins therein. Our quantitative data may forge the way to unveiling the links that exist between membrane stiffness, molecular diffusion, and signaling activation.
Keywords
Animals, Cell Membrane, Cells, Cultured, Computer Simulation, Elasticity, Hippocampus, Membrane Microdomains, Models, Neurological, Nanostructures, Neurons, Rats, Stress, Mechanical
Pubmed
Web of science
Open Access
Yes
Create date
24/01/2008 15:24
Last modification date
20/08/2019 16:40
Usage data