SMC and SMC-like proteins in genome folding and maintenance in Bacillus subtilis

Details

Ressource 1Download: 20211006_Anchimiuk_PhDthesis-OK.pdf (13140.80 [Ko])
State: Public
Version: After imprimatur
License: Not specified
Serval ID
serval:BIB_BE570D550B30
Type
PhD thesis: a PhD thesis.
Collection
Publications
Institution
Title
SMC and SMC-like proteins in genome folding and maintenance in Bacillus subtilis
Author(s)
Anchimiuk Anna
Director(s)
Gruber Stephan
Institution details
Université de Lausanne, Faculté de biologie et médecine
Publication state
Accepted
Issued date
2021
Language
english
Abstract
DNA metabolism across all kingdoms is managed by proteins belonging to the SMC and SMC-like protein families. Members of those families fold, compact, and preserve the structure of the chromosomes throughout the cell cycle. In this thesis, I address the roles and mechanisms of action of Smc and RecN, members of the SMC and SMC- like protein family, respectively, in the model organism B. subtilis.
Loop extrusion is a widely accepted model for DNA organisation mediated by SMC action. Mechanistic details of SMC transactions on the DNA remain unknown. The busy DNA translocation track raises several questions about the interplay of SMC complexes with replication and transcription machinery as well as between Smc complexes themselves. In Chapter 1, I investigate the plasticity of B. subtilis segregation system to maintain the characteristic, juxtaposed chromosome organisation. I identified and studied factors leading to Smc-Smc encounters. By utilizing chimeric Smc complexes with varying coiled coil length, I observed unexpected accumulation of proteins around loading sites which correlated with the loss of chromosome juxtaposition as seen in 3C-seq maps. Similar scenarios were obtained for wild-type complexes upon mild increase in protein levels or displacement of loading sites. Results presented in Chapter 1, strongly suggest that two translocating Smcs are unlikely to bypass one another and in wild-type cells Smc-Smc meetings are generally avoided. Loss of chromosome configuration upon mild increase in the amount of Smc complexes, modification of the number, and the location of the loading sites, demonstrate that aligning the chromosome arms is a finely tuned procedure. Perturbations, although not detrimental to cell viability, alter the architecture of the chromosome, possibly not without consequences for downstream processes, yet to be elucidated.
In Chapter 2, I confirm that bacterial specific RecN protein is involved in repair of double strand breaks (DSBs). Here, for the first time I give insights into RecN’s architecture in vivo. I perform site-specific cysteine cross-linking to test published structural data for D. radiodurans RecN. Tools for reporting intermolecular interactions between dimerization interfaces and head domains of two monomers were established and confirmed, however, I did not find evidence for RecN playing a structural role through chain formation as proposed previously. Moreover, no DSB induced changes in cross-linking patterns could be observed, despite numerous trials. Interestingly, sensitivity to DSB seems to be correlated with location of the cut on the chromosome and RecN’s presence. Single breaks close to the origin are less detrimental than ter- proximal.
--
Dans tous les règnes du vivant, le métabolisme de l'ADN est régi par des protéines appartenant à deux familles : les SMC et les protéines qui leur sont apparentées dénotées « SMC-like ». Les membres de ces familles protéiques se replient, se compactent et préservent la structure des chromosomes tout au long du cycle cellulaire. Dans cette thèse, j'aborde les rôles et les mécanismes d'action de Smc et de RecN, respectivement membres de la famille des protéines SMC, et «SMC-like», en me servant de l'organisme modèle B. subtilis.
L'extrusion de boucles d’ADN est un modèle largement admis pour l'organisation de l'ADN médiée par l'action des SMC. Les détails mécanistiques des transactions des SMC sur l'ADN restent inconnus. La piste de translocation d'ADN soulève plusieurs questions quant à l'interaction des complexes SMC avec les machineries de réplication et de transcription ainsi qu'entre les complexes Smc eux-mêmes. Dans le chapitre 1, j'examine la plasticité du système de ségrégation de B. subtilis pour maintenir l'organisation caractéristique des chromosomes juxtaposés. J'ai identifié et étudié les facteurs conduisant aux rencontres entre Smc (contacts Smc-Smc). En utilisant des complexes Smc chimériques ayant deux bras en super-hélice de longueur variable, j'ai observé une accumulation inattendue de protéines autour des sites de chargement, ceci étant corrélé avec la perte de juxtaposition des chromosomes analysée par cartographie des interactions chromosomiques (3C-seq). Des scénarios similaires ont été obtenus pour les complexes de type sauvage lors d'une légère augmentation des niveaux protéiques ou du déplacement des sites parS. Les résultats présentés dans le chapitre 1 suggèrent que deux Smc en translocation sont peu susceptibles de se contourner, et que dans les cellules de type sauvage, les contacts Smc-Smc sont généralement évités. La perte de configuration chromosomique lors d'une légère augmentation de la quantité de complexes Smc, la modification du nombre et de l'emplacement des sites de chargement, démontrent que l'alignement des bras chromosomiques est une procédure finement régulée. Les perturbations, bien que non préjudiciables à la viabilité des cellules, modifient l'architecture du chromosome, probablement non sans conséquences sur les processus en aval, qui eux restent à élucider.
Dans le chapitre 2, je confirme que la protéine RecN, spécifique aux bactéries, est impliquée dans la réparation des cassures double-brin (CDBs). Ici, pour la première fois, je donne un aperçu de l'architecture de RecN in vivo. J’effectue une technique de réticulation de protéines employant des résidus spécifiques de cystéines afin de tester les données structurelles publiées pour la protéine RecN appartenant à D. radiodurans. Les moyens permettant de rapporter les interactions intermoléculaires entre les interfaces de dimérisation et les domaines globulaires (dénotés têtes) de deux monomères ont été établis et confirmés. Cependant, je n'ai pas réussi à prouver que RecN joue un rôle structurel par la formation de chaînes, comme proposé précédemment. De plus, aucun changement induit par les CDBs dans les modèles de réticulation protéique n'a pu être observé, malgré plusieurs essais. Il est intéressant de noter que la sensibilité aux CDBs semble être corrélée à la localisation de la coupure sur le chromosome et à la présence de RecN. Les cassures simple-brin proches de l'origine de réplication sont moins préjudiciables que les cassures ter- proximales.
--
Proper segregation of genetic material to the daughter cells as well as maintenance of a specific structure and continuity of the chromosome depends on the presence of the SMC and SMC-like proteins. Both protein families are conserved from bacteria to humans. In this thesis I have investigated Smc and RecN, members of SMC and SMC- like families, respectively, in the model organism B. subtilis.
The interior of the cells is extremely crowded. Furthermore, the DNA is not naked but decorated with a variety of proteins. In B. subtilis, ring-shaped Smc complexes reel in the DNA, starting from specific loading sites (entry sites), close to the origin of replication. While translocating away from the loading sites, they align the left and right arm of the chromosome. Finally, they dissociate from the chromosome close to the terminus (exit site). On the chromosome there are several entry sites and so, it is conceivable that when two Smc complexes are loaded independently onto them and start translocating, they will eventually meet. This is a relevant question as unresolved Smc-Smc encounters might perturb chromosome organisation and limit the level of DNA compaction, potentially influencing subsequent DNA segregation to daughter cells. In Chapter 1, I investigate what happens and what are the consequences of Smc- Smc meetings. I show that several strategies are employed by B. subtilis cells to avoid Smc-Smc encounters: a limited, small number of Smc complexes available in the cell and presence of dedicated entry and exit sites. Moreover, Smc complexes are stably associated with the DNA and do not tend to fall off before reaching the destination. Surprisingly, it seems that to some extent, the cells can tolerate perturbations in chromosome organisation.
In Chapter 2, I address RecN, a protein involved in DNA repair of a type of DNA damage called double strand breaks (DSBs). There is not much known about RecN’s interactions with the DNA, nor on its specific role in the DNA repair process. Here, by using available structural information for RecN from another bacterium obtained in vitro, I prepare mutant strains to investigate RecN’s architecture in living cells for the first time. Moreover, I assess whether the introduced mutations influence sensitivity to DNA damage. In addition, by generating DSBs at different locations along the chromosome, I study the importance of RecN’s presence on DNA repair. It seems that there is a dependence between the position of the break and cell viability if RecN is present. Upon RecN deletion, survival is very limited regardless of where the cut is.
--
Les protéines SMC et SMC-like dans le repliement et le maintien du génome au sein de l’organisme modèle Bacillus subtilis
La ségrégation adéquate du matériel génétique vers les cellules filles ainsi que le maintien d'une structure spécifique et de la continuité du chromosome dépendent de la présence de protéines de type SMC et de protéines qui leur sont apparentées dénotées SMC-like. Ces deux familles protéiques sont conservées des bactéries à l'Homme. Dans cette thèse, j'ai étudié Smc et RecN, respectivement membres des familles SMC et SMC-like, au sein de l'organisme modèle B. subtilis.
L'intérieur des cellules est extrêmement encombré. De plus, l'ADN n'est pas nu, mais plutôt agrémenté par une variété de protéines. Chez B. subtilis, les complexes Smc en forme d'anneau s'enroulent dans l'ADN, à partir de sites de chargement spécifiques (sites d'entrée), proches de l'origine de réplication. En s'éloignant des sites de chargement par translocation, ils alignent les bras gauche et droit du chromosome. Enfin, ils se dissocient du chromosome près du terminus (site de sortie). Dans le chapitre 1, je m’intéresse à ce qui se produit et aux conséquences des rencontres entre Smc (contacts Smc-Smc). Sur le chromosome, il y a plusieurs sites d'entrée et il est donc concevable que lorsque deux complexes Smc sont chargés indépendamment sur ceux-ci et commencent à transloquer, ils finissent par se rencontrer. C'est une question pertinente car les contacts Smc-Smc non maitrisés pourraient perturber l'organisation du chromosome et limiter le niveau de compaction de l'ADN, ce qui pourrait potentiellement influencer la ségrégation ultérieure de l'ADN dans les cellules filles. Ici, je montre que plusieurs stratégies sont employées par les cellules de B. subtilis pour éviter les rencontres entre Smc : un petit nombre limité de complexes Smc sont disponibles dans la cellule avec la présence de sites d'entrée et de sortie dédiés. De plus, les complexes Smc sont associés de manière stable à l'ADN et n'ont pas tendance à se détacher avant d'atteindre leur destination. De manière surprenante, il semble que, dans une certaine mesure, les cellules puissent tolérer des perturbations dans l'organisation des chromosomes.
Dans le chapitre 2, je m’intéresse à RecN, un protéine impliqué dans la réparation d'un type particulier de dommage à l'ADN désigné par cassures double-brin (CDBs). Les interactions entre RecN et l'ADN sont très peu documentées, il en est de même pour son rôle spécifique dans le processus de réparation de l'ADN. Ici, en utilisant les informations structurelles disponibles pour RecN provenant d'une autre bactérie et obtenues in vitro, j’élabore des souches mutantes afin d’étudier l'architecture de RecN dans des cellules vivantes pour la première fois. De plus, j'évalue si les mutations introduites influencent la sensibilité aux dommages de l'ADN. Par ailleurs, en générant des CDBs à différents endroits le long du chromosome, j'étudie l'importance de la présence de RecN sur la réparation de l'ADN. Il semblerait y avoir une dépendance entre la position de la cassure et la viabilité cellulaire en présence de RecN. Dans le cas d’une délétion de RecN, la survie cellulaire est très limitée quel que soit l'endroit de la coupure.
Create date
08/10/2021 9:00
Last modification date
11/11/2021 10:07
Usage data