Proteoglycan sulfation in cartilage and cell cultures from patients with sulfate transporter chondrodysplasias: relationship to clinical severity and indications on the role of intracellular sulfate production.

Details

Serval ID
serval:BIB_B4FB8B17F598
Type
Article: article from journal or magazin.
Collection
Publications
Title
Proteoglycan sulfation in cartilage and cell cultures from patients with sulfate transporter chondrodysplasias: relationship to clinical severity and indications on the role of intracellular sulfate production.
Journal
Matrix Biology
Author(s)
Rossi A., Kaitila I., Wilcox W.R., Rimoin D.L., Steinmann B., Cetta G., Superti-Furga A.
ISSN
0945-053X (Print)
ISSN-L
0945-053X
Publication state
Published
Issued date
1998
Volume
17
Number
5
Pages
361-369
Language
english
Abstract
Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene have been associated with a family of chondrodysplasias that includes diastrophic dysplasia (DTD), atelosteogenesis type 2 (AO2) and the lethal condition achondrogenesis type 1B (ACG1B). There is a correlation between the nature of the mutations and the clinical phenotype, but our understanding of the pathophysiology of the disorder, which involves defective sulfation of cartilage proteoglycans, is far from complete. To evaluate the degree of proteoglycan undersulfation in vivo, we have extracted chondroitin sulfate proteoglycans from cartilage of twelve patients with sulfate transporter chondrodysplasias and analyzed their disaccharide composition by HPLC after digestion with chondroitinase ABC. The amount of non-sulfated disaccharide was elevated in patients' samples (controls, 5.5%+/-2.8 (n=10); patients, 11% to 77%), the highest amount being present in ACG1B patients, indicating that undersulfation of chondroitin sulfate proteoglycans occurs in cartilage in vivo and is correlated with the clinical severity. To investigate further the biochemical mechanisms responsible for the translation of genotype to phenotype, we have studied fibroblast cultures of patients with DTD, AO2 and ACG1B, and controls, by double-labelling with [35S]sulfate and [3H]glucosamine. The incorporation of extracellular sulfate, estimated by the 35S/3H ratio in proteoglycans, was reduced in all patients' cells, with ACG1B cells showing the lowest values. However, disaccharide analysis of chondroitin sulfate proteoglycans showed that these were normally sul fated or only moderately undersulfated; marked undersulfation was observed only after addition of the artificial glycosaminoglycan-chain initiator, beta-D-xyloside, to the culture medium. These results suggest that, while utilization of extracellular sulfate is impaired, fibroblasts can replenish their intracellular sulfate pool by oxidizing sulfur-containing compounds (such as cysteine) and thus partially rescue PG sulfation under basal conditions. This rescue pathway becomes insufficient when GAG synthesis rate is stimulated by beta-D-xyloside. These findings may explain why phenotypic consequences of DTDST mutations are restricted to cartilage, a tissue with high GAG synthesis rate and poor vascular supply, and imply that pharmacological therapy aimed at restoring the intracellular sulfate pool might improve PG sulfation in DTD and related disorders.
Keywords
Anion Transport Proteins, Biological Transport, Carrier Proteins/genetics, Carrier Proteins/metabolism, Cartilage/metabolism, Cells, Cultured, Child, Exostoses, Multiple Hereditary/genetics, Exostoses, Multiple Hereditary/metabolism, Fetus/pathology, Humans, Infant, Infant, Newborn, Membrane Transport Proteins, Mutation, Phenotype, Sulfates/metabolism
Pubmed
Create date
14/03/2011 16:08
Last modification date
20/08/2019 15:23
Usage data