Overcoming the Interobserver Variability in Lung Adenocarcinoma Subtyping: A Clustering Approach to Establish a Ground Truth for Downstream Applications.

Details

Ressource 1Download: archives_patho.pdf (2742.08 [Ko])
State: Public
Version: Final published version
License: CC BY-NC-ND 4.0
Serval ID
serval:BIB_B2FA8B33E014
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Overcoming the Interobserver Variability in Lung Adenocarcinoma Subtyping: A Clustering Approach to Establish a Ground Truth for Downstream Applications.
Journal
Archives of pathology & laboratory medicine
Author(s)
Lami K., Bychkov A., Matsumoto K., Attanoos R., Berezowska S., Brcic L., Cavazza A., English J.C., Fabro A.T., Ishida K., Kashima Y., Larsen B.T., Marchevsky A.M., Miyazaki T., Morimoto S., Roden A.C., Schneider F., Soshi M., Smith M.L., Tabata K., Takano A.M., Tanaka K., Tanaka T., Tsuchiya T., Nagayasu T., Fukuoka J.
ISSN
1543-2165 (Electronic)
ISSN-L
0003-9985
Publication state
Published
Issued date
01/08/2023
Peer-reviewed
Oui
Volume
147
Number
8
Pages
885-895
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Abstract
The accurate identification of different lung adenocarcinoma histologic subtypes is important for determining prognosis but can be challenging because of overlaps in the diagnostic features, leading to considerable interobserver variability.
To provide an overview of the diagnostic agreement for lung adenocarcinoma subtypes among pathologists and to create a ground truth using the clustering approach for downstream computational applications.
Three sets of lung adenocarcinoma histologic images with different evaluation levels (small patches, areas with relatively uniform histology, and whole slide images) were reviewed by 17 international expert lung pathologists and 1 pathologist in training. Each image was classified into one or several lung adenocarcinoma subtypes.
Among the 4702 patches of the first set, 1742 (37%) had an overall consensus among all pathologists. The overall Fleiss κ score for the agreement of all subtypes was 0.58. Using cluster analysis, pathologists were hierarchically grouped into 2 clusters, with κ scores of 0.588 and 0.563 in clusters 1 and 2, respectively. Similar results were obtained for the second and third sets, with fair-to-moderate agreements. Patches from the first 2 sets that obtained the consensus of the 18 pathologists were retrieved to form consensus patches and were regarded as the ground truth of lung adenocarcinoma subtypes.
Our observations highlight discrepancies among experts when assessing lung adenocarcinoma subtypes. However, a subsequent number of consensus patches could be retrieved from each cluster, which can be used as ground truth for the downstream computational pathology applications, with minimal influence from interobserver variability.
Keywords
Humans, Observer Variation, Adenocarcinoma of Lung, Prognosis, Lung Neoplasms/pathology, Cluster Analysis
Pubmed
Web of science
Open Access
Yes
Create date
09/11/2022 11:16
Last modification date
04/10/2023 5:58
Usage data