Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives.

Details

Serval ID
serval:BIB_A1F9F52312AD
Type
Article: article from journal or magazin.
Publication sub-type
Review (review): journal as complete as possible of one specific subject, written based on exhaustive analyses from published work.
Collection
Publications
Institution
Title
Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives.
Journal
Intensive Care Medicine
Author(s)
Mauri T., Yoshida T., Bellani G., Goligher E.C., Carteaux G., Rittayamai N., Mojoli F., Chiumello D., Piquilloud L., Grasso S., Jubran A., Laghi F., Magder S., Pesenti A., Loring S., Gattinoni L., Talmor D., Blanch L., Amato M., Chen L., Brochard L., Mancebo J.
Working group(s)
PLeUral pressure working Group (PLUG-Acute Respiratory Failure section of the European Society of Intensive Care Medicine)
ISSN
1432-1238 (Electronic)
ISSN-L
0342-4642
Publication state
Published
Issued date
2016
Peer-reviewed
Oui
Volume
42
Number
9
Pages
1360-1373
Language
english
Notes
Publication types: Journal Article ; Review
Publication Status: ppublish
Abstract
PURPOSE: Esophageal pressure (Pes) is a minimally invasive advanced respiratory monitoring method with the potential to guide management of ventilation support and enhance specific diagnoses in acute respiratory failure patients. To date, the use of Pes in the clinical setting is limited, and it is often seen as a research tool only.
METHODS: This is a review of the relevant technical, physiological and clinical details that support the clinical utility of Pes.
RESULTS: After appropriately positioning of the esophageal balloon, Pes monitoring allows titration of controlled and assisted mechanical ventilation to achieve personalized protective settings and the desired level of patient effort from the acute phase through to weaning. Moreover, Pes monitoring permits accurate measurement of transmural vascular pressure and intrinsic positive end-expiratory pressure and facilitates detection of patient-ventilator asynchrony, thereby supporting specific diagnoses and interventions. Finally, some Pes-derived measures may also be obtained by monitoring electrical activity of the diaphragm.
CONCLUSIONS: Pes monitoring provides unique bedside measures for a better understanding of the pathophysiology of acute respiratory failure patients. Including Pes monitoring in the intensivist's clinical armamentarium may enhance treatment to improve clinical outcomes.
Pubmed
Web of science
Create date
21/10/2016 15:10
Last modification date
20/08/2019 15:08
Usage data