High-precision satellite positioning system as a new tool to study the biomechanics of human locomotion.

Details

Serval ID
serval:BIB_A1B2BDDC9846
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
High-precision satellite positioning system as a new tool to study the biomechanics of human locomotion.
Journal
Journal of Biomechanics
Author(s)
Terrier P., Ladetto Q., Merminod B., Schutz Y.
ISSN
0021-9290 (Print)
ISSN-L
0021-9290
Publication state
Published
Issued date
12/2000
Volume
33
Number
12
Pages
1717-1722
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't Publication Status: ppublish
Abstract
New Global Positioning System (GPS) receivers allow now to measure a location on earth at high frequency (5Hz) with a centimetric precision using phase differential positioning method. We studied whether such technique was accurate enough to retrieve basic parameters of human locomotion. Eight subjects walked on an athletics track at four different imposed step frequencies (70-130steps/min) plus a run at free pace. Differential carrier phase localization between a fixed base station and the mobile antenna mounted on the walking person was calculated. In parallel, a triaxial accelerometer, attached to the low back, recorded body accelerations. The different parameters were averaged for 150 consecutive steps of each run for each subject (total of 6000 steps analyzed). We observed a perfect correlation between average step duration measured by accelerometer and by GPS (r=0.9998, N=40). Two important parameters for the calculation of the external work of walking were also analyzed, namely the vertical lift of the trunk and the velocity variation per step. For an average walking speed of 4.0km/h, average vertical lift and velocity variation were, respectively, 4.8cm and 0.60km/h. The average intra-individual step-to-step variability at a constant speed, which includes GPS errors and the biological gait style variation, were found to be 24. 5% (coefficient of variation) for vertical lift and 44.5% for velocity variation. It is concluded that GPS technique can provide useful biomechanical parameters for the analysis of an unlimited number of strides in an unconstrained free-living environment.
Keywords
Acceleration, Adult, Biomechanics, Female, Foot/physiology, Gait/physiology, Humans, Male, Spacecraft, Walking/physiology
Pubmed
Web of science
Create date
21/01/2008 14:08
Last modification date
20/08/2019 16:07
Usage data