Joint host-pathogen genomic analysis identifies hepatitis B virus mutations associated with human NTCP and HLA class I variation.

Details

Ressource 1Download: 38749427.pdf (3940.98 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Serval ID
serval:BIB_9CF13B4886CA
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Joint host-pathogen genomic analysis identifies hepatitis B virus mutations associated with human NTCP and HLA class I variation.
Journal
American journal of human genetics
Author(s)
Xu Z.M., Gnouamozi G.E., Rüeger S., Shea P.R., Buti M., Chan H.L., Marcellin P., Lawless D., Naret O., Zeller M., Schneuing A., Scheck A., Junier T., Moradpour D., Podlaha O., Suri V., Gaggar A., Subramanian M., Correia B., Gfeller D., Urban S., Fellay J.
ISSN
1537-6605 (Electronic)
ISSN-L
0002-9297
Publication state
Published
Issued date
06/06/2024
Peer-reviewed
Oui
Volume
111
Number
6
Pages
1018-1034
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Abstract
Evolutionary changes in the hepatitis B virus (HBV) genome could reflect its adaptation to host-induced selective pressure. Leveraging paired human exome and ultra-deep HBV genome-sequencing data from 567 affected individuals with chronic hepatitis B, we comprehensively searched for the signatures of this evolutionary process by conducting "genome-to-genome" association tests between all human genetic variants and viral mutations. We identified significant associations between an East Asian-specific missense variant in the gene encoding the HBV entry receptor NTCP (rs2296651, NTCP S267F) and mutations within the receptor-binding region of HBV preS1. Through in silico modeling and in vitro preS1-NTCP binding assays, we observed that the associated HBV mutations are in proximity to the NTCP variant when bound and together partially increase binding affinity to NTCP S267F. Furthermore, we identified significant associations between HLA-A variation and viral mutations in HLA-A-restricted T cell epitopes. We used in silico binding prediction tools to evaluate the impact of the associated HBV mutations on HLA presentation and observed that mutations that result in weaker binding affinities to their cognate HLA alleles were enriched. Overall, our results suggest the emergence of HBV escape mutations that might alter the interaction between HBV PreS1 and its cellular receptor NTCP during viral entry into hepatocytes and confirm the role of HLA class I restriction in inducing HBV epitope variations.
Keywords
Humans, Hepatitis B virus/genetics, Organic Anion Transporters, Sodium-Dependent/genetics, Organic Anion Transporters, Sodium-Dependent/metabolism, Symporters/genetics, Symporters/metabolism, Mutation, Host-Pathogen Interactions/genetics, Host-Pathogen Interactions/immunology, Hepatitis B, Chronic/virology, Hepatitis B, Chronic/genetics, Genome, Viral, Hepatitis B Surface Antigens/genetics, Epitopes, T-Lymphocyte/genetics, Epitopes, T-Lymphocyte/immunology, Genomics/methods, Histocompatibility Antigens Class I/genetics, Histocompatibility Antigens Class I/metabolism, HBV entry, escape variants, evolutionary genomics, hepatitis B virus, host-pathogen genomics, immunogenetics, selection, viral restriction
Pubmed
Open Access
Yes
Create date
16/05/2024 14:28
Last modification date
14/06/2024 7:15
Usage data