High-throughput Screening of Human Tumor Antigen-specific CD4 T Cells, Including Neoantigen-reactive T Cells.
Details
Serval ID
serval:BIB_99ED3D648751
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
High-throughput Screening of Human Tumor Antigen-specific CD4 T Cells, Including Neoantigen-reactive T Cells.
Journal
Clinical cancer research
ISSN
1078-0432 (Print)
ISSN-L
1078-0432
Publication state
Published
Issued date
15/07/2019
Peer-reviewed
Oui
Volume
25
Number
14
Pages
4320-4331
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Publication Status: ppublish
Abstract
Characterization of tumor antigen-specific CD4 T-cell responses in healthy donors and malignant melanoma patients using an in vitro amplified T-cell library screening procedure.
A high-throughput, human leukocyte antigen (HLA)-independent approach was used to estimate at unprecedented high sensitivity level precursor frequencies of tumor antigen- and neoantigen-specific CD4 T cells in healthy donors and patients with cancer. Frequency estimation was combined with isolation and functional characterization of identified tumor-reactive CD4 T-cell clones.
In healthy donors, we report frequencies of naïve tumor-associated antigen (TAA)-specific CD4 T cells comparable with those of CD4 T cells specific for infectious agents (Tetanus toxoid). Interestingly, we also identified low, but consistent numbers of memory CD4 T cells specific for several TAAs. In patients with melanoma, low frequencies of circulating TAA-specific CD4 T cells were detected that increased after peptide-based immunotherapy. Such antitumor TAA-specific CD4 T-cell responses were also detectable within the tumor-infiltrated tissues. TAA-specific CD4 T cells in patients displayed a highly polyfunctional state, with partial skewing to Type-2 polarization. Finally, we report the applicability of this approach to the detection and amplification of neoantigen-specific CD4 T cells.
This simple, noninvasive, high-throughput screening of tumor- and neoantigen-specific CD4 T cells requires little biologic material, is HLA class II independent and allows the concomitant screening for a large number of tumor antigens of interest, including neoantigens. This approach will facilitate the immunomonitoring of preexisting and therapy-induced CD4 T-cell responses, and accelerate the development of CD4 T-cell-based therapies.
A high-throughput, human leukocyte antigen (HLA)-independent approach was used to estimate at unprecedented high sensitivity level precursor frequencies of tumor antigen- and neoantigen-specific CD4 T cells in healthy donors and patients with cancer. Frequency estimation was combined with isolation and functional characterization of identified tumor-reactive CD4 T-cell clones.
In healthy donors, we report frequencies of naïve tumor-associated antigen (TAA)-specific CD4 T cells comparable with those of CD4 T cells specific for infectious agents (Tetanus toxoid). Interestingly, we also identified low, but consistent numbers of memory CD4 T cells specific for several TAAs. In patients with melanoma, low frequencies of circulating TAA-specific CD4 T cells were detected that increased after peptide-based immunotherapy. Such antitumor TAA-specific CD4 T-cell responses were also detectable within the tumor-infiltrated tissues. TAA-specific CD4 T cells in patients displayed a highly polyfunctional state, with partial skewing to Type-2 polarization. Finally, we report the applicability of this approach to the detection and amplification of neoantigen-specific CD4 T cells.
This simple, noninvasive, high-throughput screening of tumor- and neoantigen-specific CD4 T cells requires little biologic material, is HLA class II independent and allows the concomitant screening for a large number of tumor antigens of interest, including neoantigens. This approach will facilitate the immunomonitoring of preexisting and therapy-induced CD4 T-cell responses, and accelerate the development of CD4 T-cell-based therapies.
Pubmed
Web of science
Create date
03/05/2019 16:10
Last modification date
21/08/2019 5:32