Gene regulation of the avian malaria parasite Plasmodium relictum, during the different stages within the mosquito vector.
Details
Serval ID
serval:BIB_97C405F7BB35
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Gene regulation of the avian malaria parasite Plasmodium relictum, during the different stages within the mosquito vector.
Journal
Genomics
ISSN
1089-8646 (Electronic)
ISSN-L
0888-7543
Publication state
Published
Issued date
07/2021
Peer-reviewed
Oui
Volume
113
Number
4
Pages
2327-2337
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Abstract
The malaria parasite Plasmodium relictum is one of the most widespread species of avian malaria. As in the case of its human counterparts, bird Plasmodium undergoes a complex life cycle infecting two hosts: the arthropod vector and the vertebrate host. In this study, we examined transcriptomes of P. relictum (SGS1) during crucial timepoints within its vector, Culex pipiens quinquefasciatus. Differential gene-expression analyses identified genes linked to the parasites life-stages at: i) a few minutes after the blood meal is ingested, ii) during peak oocyst production phase, iii) during peak sporozoite phase and iv) during the late-stages of the infection. A large amount of genes coding for functions linked to host-immune invasion and multifunctional genes was active throughout the infection cycle. One gene associated with a conserved Plasmodium membrane protein with unknown function was upregulated throughout the parasite development in the vector, suggesting an important role in the successful completion of the sporogonic cycle. Gene expression analysis further identified genes, with unknown functions to be significantly differentially expressed during the infection in the vector as well as upregulation of reticulocyte-binding proteins, which raises the possibility of the multifunctionality of these RBPs. We establish the existence of highly stage-specific pathways being overexpressed during the infection. This first study of gene-expression of a non-human Plasmodium species in its vector provides a comprehensive insight into the molecular mechanisms of the common avian malaria parasite P. relictum and provides essential information on the evolutionary diversity in gene regulation of the Plasmodium's vector stages.
Keywords
Animals, Culex/genetics, Culex/parasitology, Malaria, Avian/genetics, Mosquito Vectors/parasitology, Parasites, Plasmodium/genetics, Culex pipiens quinquefasciatus, Extrinsic incubation, Plasmodium relictum, Transmission
Pubmed
Web of science
Open Access
Yes
Create date
31/05/2021 7:51
Last modification date
20/01/2024 7:21