Single Subject Finger Somatotopy Mapping at 7T.

Details

Serval ID
serval:BIB_8A2E3BE91BFB
Type
Inproceedings: an article in a conference proceedings.
Publication sub-type
Poster: Summary – with images – on one page of the results of a researche project. The summaries of the poster must be entered in "Abstract" and not "Poster".
Collection
Publications
Institution
Title
Single Subject Finger Somatotopy Mapping at 7T.
Title of the conference
OHBM 2010, 16th Annual Meeting of the Organization for Human Brain Mapping
Author(s)
Martuzzi R., van der Zwaag W., Farthouat J., Dieguez S., Ionta S., Gruetter R., Blanke O.
Publisher
NeuroImage
Address
Barcelona, Spain, June 6-12, 2010
Publication state
Published
Issued date
2010
Language
english
Abstract
Introduction: The primary somatosensory cortex (SI) contains Brodmann areas (BA) 1, 2, 3a, and 3b. Research in non-human primates showed that BAs 3b, 1, and 2 each contain one full representation of the hand with separate representations for each finger. This research also showed that the finger representation in BA3b has larger and clearer finger somatotopy than BA1 and 2. Although several efforts to map finger somatotopy in SI by fMRI have been made at 1.5 and 3T these studies have yielded variable results and were not able to detect single subject finger somatotopy, probably due to the limited spatial extent of the cortical areas representing a digit (close to the resolution in most fMRI experiments), complications due to acquisition of consistent maps for individual subjects (Schweizer et al 2008), or inter-individual variability in sulcal anatomy impeding group studies. Here, we used 7T fMRI to investigate finger somatotopy in SI, some of its functional characteristics, and its reproducibility.
Methods: Eight right-handed male subjects were scanned on a 7T scanner (Siemens Medical, Germany) with an 8-channel Tx/Rx rf-coil (Rapid Biomedical, Germany). 1.3x1.3x1.3mm3 resolution fMRI data were acquired using a sinusoidal readout EPI sequence (Speck et al, 2008) and FOV=210mm, TE/TR=27ms/2.5s, GRAPPA=2. Each volume contained 28 transverse slices covering SI. A single EPI volume with 64 slices was acquired to aid coregistration. 1x1x1mm3 anatomical data were acquire using the MP2RAGE sequence (Marques et al, 2009; TE/TR/TI1,2/TRmprage=2.63ms/7.2ms/0.9,3.2s/5s).
Subjects were positioned supine in the scanner with their right arm comfortably against the magnet bore. An experimenter was positioned at the entrance of the bore where he could easily reach and stroke successively the two distal phalanxes of each digit. The order of stroked digit was D1 (thumb)-D3-D5-D2-D4, with 20s ON, 10s OFF alternated. This sequence was repeated four times per run and two functional runs were acquired per subject.
Realignment, smoothing (FWHM 2 mm), coregistration of the anatomical to the fMRI data and calculation of t-statistics were done using SPM8. An SI mask was obtained via an F-contrast (p<0.001) over all digits. Within the mask, voxels were labeled with the number of the digit demonstrating the highest t-value for that particular voxel.
Results: For all subjects, areas corresponding to the five digits were identified in contralateral SI. BA3b showed the most consistent somatotopic finger representation (see an example in Fig.1). The five digits were localized in a consecutive order in the cortex, with D1 most anterior, inferior and distal and D5, most posterior, superior and medial (mean distance between centres of mass of digit representations ±stderr: 4.2±0.7mm; see Fig. 2). The analysis of average beta values within each finger representation region revealed the specificity of the somatotopic region to the tactile input for each tested finger (except digit 4 and 5). Five of these subjects also presented an orderly and consecutive representation of the five digits in BA1 and 2.
Conclusions: Our data reveal that the increased BOLD sensitivity at 7T and the high spatial resolution used in this study allow consistent somatotopic mapping using human touch as a stimulus and that human SI contains at least three separate regions that contain five separate representations of all single contralateral fingers. Moreover, adjacent fingers were represented at adjacent cortical regions across the three SI regions. The spatial organization of SI as reflected in individual subject topography corresponds well with previous electrophysiological data in non-human primates. The small distance between digit representations highlights the need for the high spatial resolution available at 7T.
Create date
16/02/2011 11:11
Last modification date
20/08/2019 15:49
Usage data