Brain age prediction using fMRI network coupling in youths and associations with psychiatric symptoms.
Details
State: Public
Version: Final published version
License: CC BY-NC-ND 4.0
Serval ID
serval:BIB_87D2CEE84746
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Brain age prediction using fMRI network coupling in youths and associations with psychiatric symptoms.
Journal
NeuroImage. Clinical
ISSN
2213-1582 (Electronic)
ISSN-L
2213-1582
Publication state
Published
Issued date
2022
Peer-reviewed
Oui
Volume
33
Pages
102921
Language
english
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Abstract
Magnetic resonance imaging (MRI) has shown that estimated brain age is deviant from chronological age in various common brain disorders. Brain age estimation could be useful for investigating patterns of brain maturation and integrity, aiding to elucidate brain mechanisms underlying these heterogeneous conditions. Here, we examined functional brain age in two large samples of children and adolescents and its relation to mental health.
We used resting-state fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC; n = 1126, age range 8-22 years) to estimate functional connectivity between brain networks, and utilized these as features for brain age prediction. We applied the prediction model to 1387 individuals (age range 8-22 years) in the Healthy Brain Network sample (HBN). In addition, we estimated brain age in PNC using a cross-validation framework. Next, we tested for associations between brain age gap and various aspects of psychopathology and cognitive performance.
Our model was able to predict age in the independent test samples, with a model performance of r = 0.54 for the HBN test set, supporting consistency in functional connectivity patterns between samples and scanners. Linear models revealed a significant association between brain age gap and psychopathology in PNC, where individuals with a lower estimated brain age, had a higher overall symptom burden. These associations were not replicated in HBN.
Our findings support the use of brain age prediction from fMRI-based connectivity. While requiring further extensions and validations, the approach may be instrumental for detecting brain phenotypes related to intrinsic connectivity and could assist in characterizing risk in non-typically developing populations.
We used resting-state fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC; n = 1126, age range 8-22 years) to estimate functional connectivity between brain networks, and utilized these as features for brain age prediction. We applied the prediction model to 1387 individuals (age range 8-22 years) in the Healthy Brain Network sample (HBN). In addition, we estimated brain age in PNC using a cross-validation framework. Next, we tested for associations between brain age gap and various aspects of psychopathology and cognitive performance.
Our model was able to predict age in the independent test samples, with a model performance of r = 0.54 for the HBN test set, supporting consistency in functional connectivity patterns between samples and scanners. Linear models revealed a significant association between brain age gap and psychopathology in PNC, where individuals with a lower estimated brain age, had a higher overall symptom burden. These associations were not replicated in HBN.
Our findings support the use of brain age prediction from fMRI-based connectivity. While requiring further extensions and validations, the approach may be instrumental for detecting brain phenotypes related to intrinsic connectivity and could assist in characterizing risk in non-typically developing populations.
Keywords
Adolescent, Adult, Brain/diagnostic imaging, Brain Mapping/methods, Child, Cohort Studies, Humans, Magnetic Resonance Imaging/methods, Mental Disorders/diagnostic imaging, Young Adult, Brain age, Development, Machine learning, Resting-state fMRI, The Healthy brain network, The Philadelphia neurodevelopmental cohort
Pubmed
Web of science
Open Access
Yes
Create date
04/01/2022 9:28
Last modification date
09/08/2024 16:02