G9a dictates neuronal vulnerability to inflammatory stress via transcriptional control of ferroptosis.
Details
Serval ID
serval:BIB_837734986707
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
G9a dictates neuronal vulnerability to inflammatory stress via transcriptional control of ferroptosis.
Journal
Science advances
ISSN
2375-2548 (Electronic)
ISSN-L
2375-2548
Publication state
Published
Issued date
05/08/2022
Peer-reviewed
Oui
Volume
8
Number
31
Pages
eabm5500
Language
english
Notes
Publication types: Journal Article
Publication Status: ppublish
Publication Status: ppublish
Abstract
Neuroinflammation leads to neuronal stress responses that contribute to neuronal dysfunction and loss. However, treatments that stabilize neurons and prevent their destruction are still lacking. Here, we identify the histone methyltransferase G9a as a druggable epigenetic regulator of neuronal vulnerability to inflammation. In murine experimental autoimmune encephalomyelitis (EAE) and human multiple sclerosis (MS), we found that the G9a-catalyzed repressive epigenetic mark H3K9me2 was robustly induced by neuroinflammation. G9a activity repressed anti-ferroptotic genes, diminished intracellular glutathione levels, and triggered the iron-dependent programmed cell death pathway ferroptosis. Conversely, pharmacological treatment of EAE mice with a G9a inhibitor restored anti-ferroptotic gene expression, reduced inflammation-induced neuronal loss, and improved clinical outcome. Similarly, neuronal anti-ferroptotic gene expression was reduced in MS brain tissue and was boosted by G9a inhibition in human neuronal cultures. This study identifies G9a as a critical transcriptional enhancer of neuronal ferroptosis and potential therapeutic target to counteract inflammation-induced neurodegeneration.
Keywords
Animals, Encephalomyelitis, Autoimmune, Experimental/genetics, Ferroptosis/genetics, Gene Expression Regulation, Histone-Lysine N-Methyltransferase/metabolism, Humans, Inflammation/genetics, Mice, Multiple Sclerosis, Neurons/metabolism
Pubmed
Web of science
Open Access
Yes
Create date
28/05/2025 8:05
Last modification date
29/05/2025 7:20