Extending peripersonal space representation without tool-use: evidence from a combined behavioral-computational approach.
Details
Serval ID
serval:BIB_824F4A40A1AF
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Extending peripersonal space representation without tool-use: evidence from a combined behavioral-computational approach.
Journal
Frontiers in behavioral neuroscience
ISSN
1662-5153 (Print)
ISSN-L
1662-5153
Publication state
Published
Issued date
2015
Peer-reviewed
Oui
Volume
9
Pages
4
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Abstract
Stimuli from different sensory modalities occurring on or close to the body are integrated in a multisensory representation of the space surrounding the body, i.e., peripersonal space (PPS). PPS dynamically modifies depending on experience, e.g., it extends after using a tool to reach far objects. However, the neural mechanism underlying PPS plasticity after tool use is largely unknown. Here we use a combined computational-behavioral approach to propose and test a possible mechanism accounting for PPS extension. We first present a neural network model simulating audio-tactile representation in the PPS around one hand. Simulation experiments showed that our model reproduced the main property of PPS neurons, i.e., selective multisensory response for stimuli occurring close to the hand. We used the neural network model to simulate the effects of a tool-use training. In terms of sensory inputs, tool use was conceptualized as a concurrent tactile stimulation from the hand, due to holding the tool, and an auditory stimulation from the far space, due to tool-mediated action. Results showed that after exposure to those inputs, PPS neurons responded also to multisensory stimuli far from the hand. The model thus suggests that synchronous pairing of tactile hand stimulation and auditory stimulation from the far space is sufficient to extend PPS, such as after tool-use. Such prediction was confirmed by a behavioral experiment, where we used an audio-tactile interaction paradigm to measure the boundaries of PPS representation. We found that PPS extended after synchronous tactile-hand stimulation and auditory-far stimulation in a group of healthy volunteers. Control experiments both in simulation and behavioral settings showed that the same amount of tactile and auditory inputs administered out of synchrony did not change PPS representation. We conclude by proposing a simple, biological-plausible model to explain plasticity in PPS representation after tool-use, which is supported by computational and behavioral data.
Keywords
multisensory processing, neural network model, peripersonal space, plasticity, tool-use
Pubmed
Web of science
Open Access
Yes
Create date
25/03/2025 19:59
Last modification date
27/03/2025 9:08