Changes in latent fingermark glyceride composition as a function of sample age using UPLC-IMS-QToF-MSE
Details
Download: Frick et al. (2020) Fingermark TG composition over time. The Analyst.pdf (1069.86 [Ko])
State: Public
Version: author
License: All rights reserved
State: Public
Version: author
License: All rights reserved
Serval ID
serval:BIB_7BDFE3216EBC
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Changes in latent fingermark glyceride composition as a function of sample age using UPLC-IMS-QToF-MSE
Journal
The Analyst
ISSN
0003-2654
1364-5528
1364-5528
Publication state
Published
Issued date
2020
Peer-reviewed
Oui
Volume
145
Number
12
Pages
4212-4223
Language
english
Abstract
The composition of fingermark residue has been an important topic in forensic science, mainly in efforts to better understand and eventually improve the efficacy of latent fingermark detection methods. While the lipid fraction has been extensively studied, there is currently little information about how the glyceride fraction of latent fingermarks is chemically altered over time following deposition. A previously reported untargeted ultra performance liquid chromatography-ion mobility spectrometry-quadrupole time-offlight
mass spectrometry (UPLC-IMS-QToF-MSE) method was used to investigate changes over time in fingermark di- and triglycerides. Charged latent fingermark samples from 5 donors were analysed up to 28 days following deposition. Significant changes in glyceride composition occurred with increased sample age, attributed primarily to the oxidation of unsaturated triglycerides through ozonolysis. Considerably fewer unsaturated TGs were identified in samples 7 and 28 days following deposition, while mono- and diozonides of these lipids were identified as major components of aged samples. Additional compounds were identified as possible aldehyde and carboxylic acid derivatives resulting from the reaction
of water with ozonolysis intermediates. While the onset of these processes occurred rapidly following deposition, continuing oxidation over time was seen via the progressive ozonolysis of diunsaturated triglycerides. These results represent a further step towards understanding the factors affecting fingermark composition, ageing and subsequent detection under operational conditions.
mass spectrometry (UPLC-IMS-QToF-MSE) method was used to investigate changes over time in fingermark di- and triglycerides. Charged latent fingermark samples from 5 donors were analysed up to 28 days following deposition. Significant changes in glyceride composition occurred with increased sample age, attributed primarily to the oxidation of unsaturated triglycerides through ozonolysis. Considerably fewer unsaturated TGs were identified in samples 7 and 28 days following deposition, while mono- and diozonides of these lipids were identified as major components of aged samples. Additional compounds were identified as possible aldehyde and carboxylic acid derivatives resulting from the reaction
of water with ozonolysis intermediates. While the onset of these processes occurred rapidly following deposition, continuing oxidation over time was seen via the progressive ozonolysis of diunsaturated triglycerides. These results represent a further step towards understanding the factors affecting fingermark composition, ageing and subsequent detection under operational conditions.
Keywords
Analytical Chemistry, Spectroscopy, Electrochemistry, Biochemistry, Environmental Chemistry
Pubmed
Funding(s)
Swiss National Science Foundation / 205121_169677
Create date
01/05/2020 11:22
Last modification date
29/06/2020 7:09