Mutualism with sea anemones triggered the adaptive radiation of clownfishes.
Details
Download: BIB_748C691EA131.P001.pdf (3476.69 [Ko])
State: Public
Version: author
State: Public
Version: author
Serval ID
serval:BIB_748C691EA131
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Mutualism with sea anemones triggered the adaptive radiation of clownfishes.
Journal
BMC Evolutionary Biology
ISSN
1471-2148 (Electronic)
ISSN-L
1471-2148
Publication state
Published
Issued date
2012
Peer-reviewed
Oui
Volume
12
Number
1
Pages
212
Language
english
Abstract
ABSTRACT:
BACKGROUND: Adaptive radiation is the process by which a single ancestral species diversifies into many descendants adapted to exploit a wide range of habitats. The appearance of ecological opportunities, or the colonisation or adaptation to novel ecological resources, has been documented to promote adaptive radiation in many classic examples. Mutualistic interactions allow species to access resources untapped by competitors, but evidence shows that the effect of mutualism on species diversification can greatly vary among mutualistic systems. Here, we test whether the development of obligate mutualism with sea anemones allowed the clownfishes to radiate adaptively across the Indian and western Pacific oceans reef habitats.
RESULTS: We show that clownfishes morphological characters are linked with ecological niches associated with the sea anemones. This pattern is consistent with the ecological speciation hypothesis. Furthermore, the clownfishes show an increase in the rate of species diversification as well as rate of morphological evolution compared to their closest relatives without anemone mutualistic associations.
CONCLUSIONS: The effect of mutualism on species diversification has only been studied in a limited number of groups. We present a case of adaptive radiation where mutualistic interaction is the likely key innovation, providing new insights into the mechanisms involved in the buildup of biodiversity. Due to a lack of barriers to dispersal, ecological speciation is rare in marine environments. Particular life-history characteristics of clownfishes likely reinforced reproductive isolation between populations, allowing rapid species diversification.
BACKGROUND: Adaptive radiation is the process by which a single ancestral species diversifies into many descendants adapted to exploit a wide range of habitats. The appearance of ecological opportunities, or the colonisation or adaptation to novel ecological resources, has been documented to promote adaptive radiation in many classic examples. Mutualistic interactions allow species to access resources untapped by competitors, but evidence shows that the effect of mutualism on species diversification can greatly vary among mutualistic systems. Here, we test whether the development of obligate mutualism with sea anemones allowed the clownfishes to radiate adaptively across the Indian and western Pacific oceans reef habitats.
RESULTS: We show that clownfishes morphological characters are linked with ecological niches associated with the sea anemones. This pattern is consistent with the ecological speciation hypothesis. Furthermore, the clownfishes show an increase in the rate of species diversification as well as rate of morphological evolution compared to their closest relatives without anemone mutualistic associations.
CONCLUSIONS: The effect of mutualism on species diversification has only been studied in a limited number of groups. We present a case of adaptive radiation where mutualistic interaction is the likely key innovation, providing new insights into the mechanisms involved in the buildup of biodiversity. Due to a lack of barriers to dispersal, ecological speciation is rare in marine environments. Particular life-history characteristics of clownfishes likely reinforced reproductive isolation between populations, allowing rapid species diversification.
Keywords
Ecological speciation, Diversification, Comparative method, Evolutionary rate, Brownian Motion, Pomacentridae
Pubmed
Web of science
Open Access
Yes
Create date
03/11/2012 17:38
Last modification date
20/08/2019 15:32