Reproducibility of bolus versus continuous thermodilution for assessment of coronary microvascular function in patients with ANOCA.

Details

Serval ID
serval:BIB_744ECA946B06
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Reproducibility of bolus versus continuous thermodilution for assessment of coronary microvascular function in patients with ANOCA.
Journal
EuroIntervention
Author(s)
Gallinoro E., Bertolone D.T., Fernandez-Peregrina E., Paolisso P., Bermpeis K., Esposito G., Gomez-Lopez A., Candreva A., Mileva N., Belmonte M., Mizukami T., Fournier S., Vanderheyden M., Wyffels E., Bartunek J., Sonck J., Barbato E., Collet C., De Bruyne B.
ISSN
1969-6213 (Electronic)
ISSN-L
1774-024X
Publication state
Published
Issued date
05/06/2023
Peer-reviewed
Oui
Volume
19
Number
2
Pages
e155-e166
Language
english
Notes
Publication types: Randomized Controlled Trial ; Journal Article
Publication Status: epublish
Abstract
A bolus thermodilution-derived index of microcirculatory resistance (IMR) has emerged as the standard for assessing coronary microvascular dysfunction (CMD). Continuous thermodilution has recently been introduced as a tool to quantify absolute coronary flow and microvascular resistance directly. Microvascular resistance reserve (MRR) derived from continuous thermodilution has been proposed as a novel metric of microvascular function, which is independent of epicardial stenoses and myocardial mass.
We aimed to assess the reproducibility of bolus and continuous thermodilution in assessing coronary microvascular function.
Patients with angina and non-obstructive coronary artery disease (ANOCA) at angiography were prospectively enrolled. Bolus and continuous intracoronary thermodilution measurements were obtained in duplicate in the left anterior descending artery (LAD). Patients were randomly assigned in a 1:1 ratio to undergo either bolus thermodilution first or continuous thermodilution first.
A total of 102 patients were enrolled. The mean fractional flow reserve (FFR) was 0.86±0.06. Coronary flow reserve (CFR) calculated with continuous thermodilution (CFR <sub>cont</sub> ) was significantly lower than bolus thermodilution-derived CFR (CFR <sub>bolus</sub> ; 2.63±0.65 vs 3.29±1.17; p<0.001). CFR <sub>cont</sub> showed a higher reproducibility than CFR <sub>bolus</sub> (variability: 12.7±10.4% continuous vs 31.26±24.85% bolus; p<0.001). MRR showed a higher reproducibility than IMR (variability 12.4±10.1% continuous vs 24.2±19.3% bolus; p<0.001). No correlation was found between MRR and IMR (r=0.1, 95% confidence interval: -0.09 to 0.29; p=0.305).
In the assessment of coronary microvascular function, continuous thermodilution demonstrated significantly less variability on repeated measurements than bolus thermodilution.
Keywords
Humans, Coronary Circulation, Fractional Flow Reserve, Myocardial, Thermodilution, Microcirculation, Reproducibility of Results, Vascular Resistance, Cardiac Catheterization, Coronary Vessels, Coronary Angiography
Pubmed
Web of science
Create date
28/02/2023 15:31
Last modification date
14/12/2023 8:12
Usage data