A novel EEG marker predicts perceived sleepiness and poor sleep quality.
Details
Serval ID
serval:BIB_6EA6DCB75F80
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
A novel EEG marker predicts perceived sleepiness and poor sleep quality.
Journal
Sleep
ISSN
1550-9109 (Electronic)
ISSN-L
0161-8105
Publication state
Published
Issued date
12/05/2022
Peer-reviewed
Oui
Volume
45
Number
5
Pages
zsac051
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Abstract
To determine if a novel EEG-derived continuous index of sleep depth/alertness, the odds ratio product (ORP), predicts self-reported daytime sleepiness and poor sleep quality in two large population-based cohorts.
ORP values which range from 0 (deep sleep) to 2.5 (fully alert) were calculated in 3s intervals during awake periods (ORPwake) and NREM sleep (ORPNREM) determined from home sleep studies in the HypnoLaus (N = 2162: 1106 females, 1056 males) and men androgen inflammation lifestyle environment and stress (MAILES) cohorts (N = 754 males). Logistic regression was used to examine associations between ORPwake, ORPNREM, and traditional polysomnography measures (as comparators) with excessive sleepiness (Epworth sleepiness scale >10) and poor sleep quality (Pittsburgh sleep quality index >5) and insomnia symptoms.
High ORPwake was associated with a ~30% increase in poor sleep quality in both HypnoLaus (odds ratio, OR, and 95% CI) 1.28 (1.09, 1.51), and MAILES 1.36 (1.10, 1.68). High ORPwake was also associated with a ~28% decrease in excessive daytime sleepiness in the MAILES dataset. ORPNREM was associated with a ~30% increase in poor sleep quality in HypnoLaus but not in MAILES. No consistent associations across cohorts were detected using traditional polysomnography markers.
ORP, a novel EEG-derived metric, measured during wake periods predicts poor sleep quality in two independent cohorts. Consistent with insomnia symptomatology of poor perceived sleep in the absence of excessive daytime sleepiness, ORPwake may provide valuable objective mechanistic insight into physiological hyperarousal.
ORP values which range from 0 (deep sleep) to 2.5 (fully alert) were calculated in 3s intervals during awake periods (ORPwake) and NREM sleep (ORPNREM) determined from home sleep studies in the HypnoLaus (N = 2162: 1106 females, 1056 males) and men androgen inflammation lifestyle environment and stress (MAILES) cohorts (N = 754 males). Logistic regression was used to examine associations between ORPwake, ORPNREM, and traditional polysomnography measures (as comparators) with excessive sleepiness (Epworth sleepiness scale >10) and poor sleep quality (Pittsburgh sleep quality index >5) and insomnia symptoms.
High ORPwake was associated with a ~30% increase in poor sleep quality in both HypnoLaus (odds ratio, OR, and 95% CI) 1.28 (1.09, 1.51), and MAILES 1.36 (1.10, 1.68). High ORPwake was also associated with a ~28% decrease in excessive daytime sleepiness in the MAILES dataset. ORPNREM was associated with a ~30% increase in poor sleep quality in HypnoLaus but not in MAILES. No consistent associations across cohorts were detected using traditional polysomnography markers.
ORP, a novel EEG-derived metric, measured during wake periods predicts poor sleep quality in two independent cohorts. Consistent with insomnia symptomatology of poor perceived sleep in the absence of excessive daytime sleepiness, ORPwake may provide valuable objective mechanistic insight into physiological hyperarousal.
Keywords
Disorders of Excessive Somnolence/diagnosis, Electroencephalography, Female, Humans, Male, Sleep Initiation and Maintenance Disorders, Sleep Quality, Sleepiness, Surveys and Questionnaires, Wakefulness, biomarker, daytime sleepiness, hyperarousal, insomnia, odds ratio product, sleep disruption
Pubmed
Web of science
Create date
14/03/2022 8:58
Last modification date
23/03/2023 6:53