Neuronal responses in mouse barrel cortex:Comparison of two signal discriminators


Ressource 1Download: BIB_6AC124D67BA7.P001.pdf (12190.71 [Ko])
State: Public
Version: After imprimatur
Serval ID
A Master's thesis.
Publication sub-type
Master (thesis) (master)
Neuronal responses in mouse barrel cortex:Comparison of two signal discriminators
Scartezzini K.
Welker E.
Institution details
Université de Lausanne, Faculté de biologie et médecine
Publication state
Issued date
Number of pages
Barrels are discrete cytoarchitectonic neurons cluster located in the layer IV of the somatosensory¦cortex in mice brain. Each barrel is related to a specific whisker located on the mouse snout. The¦whisker-to-barrel pathway is a part of the somatosensory system that is intensively used to explore¦sensory activation induced plasticity in the cerebral cortex.¦Different recording methods exist to explore the cortical response induced by whisker deflection in¦the cortex of anesthetized mice. In this work, we used a method called the Single-Unit Analysis by¦which we recorded the extracellular electric signals of a single barrel neuron using a microelectrode.¦After recording the signal was processed by discriminators to isolate specific neuronal shape (action¦potentials).¦The objective of this thesis was to familiarize with the barrel cortex recording during whisker¦deflection and its theoretical background and to compare two different ways of discriminating and¦sorting cortical signal, the Waveform Window Discriminator (WWD) or the Spike Shape Discriminator (SSD).¦WWD is an electric module allowing the selection of specific electric signal shape. A trigger and a¦window potential level are set manually. During measurements, every time the electric signal passes¦through the two levels a dot is generated on time line. It was the method used in previous¦extracellular recording study in the Département de Biologie Cellulaire et de Morphologie (DBCM) in¦Lausanne.¦SSD is a function provided by the signal analysis software Spike2 (Cambridge Electronic Design). The¦neuronal signal is discriminated by a complex algorithm allowing the creation of specific templates.¦Each of these templates is supposed to correspond to a cell response profile. The templates are saved¦as a number of points (62 in this study) and are set for each new cortical location. During¦measurements, every time the cortical recorded signal corresponds to a defined number of templates¦points (60% in this study) a dot is generated on time line. The advantage of the SSD is that multiple¦templates can be used during a single stimulation, allowing a simultaneous recording of multiple¦signals.¦It exists different ways to represent data after discrimination and sorting. The most commonly used¦in the Single-Unit Analysis of the barrel cortex are the representation of the time between stimulation¦and the first cell response (the latency), the representation of the Response Magnitude (RM) after¦whisker deflection corrected for spontaneous activity and the representation of the time distribution¦of neuronal spikes on time axis after whisker stimulation (Peri-Stimulus Time Histogram, PSTH).¦The results show that the RMs and the latencies in layer IV were significantly different between the¦WWD and the SSD discriminated signal. The temporal distribution of the latencies shows that the¦different values were included between 6 and 60ms with no peak value for SSD while the WWD¦data were all gathered around a peak of 11ms (corresponding to previous studies). The scattered¦distribution of the latencies recorded with the SSD did not correspond to a cell response.¦The SSD appears to be a powerful tool for signal sorting but we do not succeed to use it for the¦Single-Unit Analysis extracellular recordings. Further recordings with different SSD templates settings¦and larger sample size may help to show the utility of this tool in Single-Unit Analysis studies.
Barrel, Cortex, Somatosensory, Electrophysiology, Sorting
Create date
25/06/2012 8:59
Last modification date
20/08/2019 15:25
Usage data