Distribution of neuronal and metabolic markers in the human auditory cortex

Details

Request a copy
Serval ID
serval:BIB_6A02B2922255
Type
PhD thesis: a PhD thesis.
Collection
Publications
Institution
Title
Distribution of neuronal and metabolic markers in the human auditory cortex
Author(s)
Chiry O.
Director(s)
Clarke S.
Institution details
Université de Lausanne, Faculté de biologie et médecine
Address
Lausanne
Publication state
Accepted
Issued date
2004
Language
english
Number of pages
112
Notes
REROID:R003738657; 30 cm ill.
Abstract
SUMMARY
The human auditory cortex, located on the supratemporal plane of the temporal lobe, is divided in a primary auditory area and several non-primary areas surrounding it. These different areas show anatomical and functional differences. Many studies have focussed on auditory areas in non-human primates, using investigation techniques such as electrophysiological recordings, tracing of neural connections, or immunohistochemical and histochemical staining. Some of these studies have suggested parallel and hierarchical organization of the cortical auditory areas as well as subcortical auditory relays. In humans, only few studies have investigated these regions immunohistochemically, but activation and lesion studies speak in favour of parallel and hierarchical organization, very similar to that of non-human primates.
Calcium-binding proteins and metabolic markers were used to investigate possible correlates of hierarchical and parallel organization in man. Calcium-binding proteins, parvalbumin, calretinin and calbindin, modulate the concentration of intracellular free calcium ions and were found in distinct subpopulations of GABAergic neurons in non-human primates species. In our study, their distribution showed several differences between auditory areas: the primary auditory area was darkly stained for both parvalbumin and calbindin, and their expression rapidly decreased while moving away from the primary area. This staining pattern suggests a hierarchical organization of the areas, in which the more darkly stained areas could correspond to an earlier integration level and the areas showing light staining may correspond to higher level integration areas. Parallel organization of primary and non-primary auditory areas was suggested by the complementarity, within a given area, between parvalbumin and calbindin expression across layers.
To investigate the possible differences in the energetic metabolism of the cortical auditory areas, several metabolic markers were used: cytochrome oxidase and LDH1 were used as oxidative metabolism markers and LDH5 was used as glycolytic metabolism marker. The results obtained show a difference in the expression of enzymes involved in oxidative metabolism between areas. In the primary auditory area the oxidative metabolism markers were maximally expressed in layer IV. In contrast, higher order areas showed maximal staining in supragranular layers. The expression of LDH5 varied in patches, but did not differ between the different hierarchical auditory areas. The distribution of the two LDH enzymes isoforms also provides information about cellular aspects of metabolic organization, since neurons expressed the LDH1 isoform whereas astrocytes express primarily LDH5, but some astrocytes also contained the LDH1 isoform. This cellular distribution pattern supports the hypothesis of the existence of an astrocyte-neuron lactate shuttle, previously suggested in rodent studies, and in particular of lactate transfer from astrocytes, which produce lactate from the glucose obtained from the circulation, to neurons that use lactate as energy substrate.
In conclusion, the hypothesis of parallel and hierarchical organization of the auditory areas can be supported by CaBPs, cytochrome oxidase and LDH1 distribution. Moreover, the two LDHs cellular distribution pattern support the hypothesis of an astrocyte-neuron lactate shuttle in human cortex.
Create date
16/12/2010 19:05
Last modification date
20/08/2019 15:24
Usage data