Convergence of a stabilized discontinuous Galerkin method for incompressible nonlinear elasticity

Details

Serval ID
serval:BIB_65BEEE047143
Type
Article: article from journal or magazin.
Collection
Publications
Title
Convergence of a stabilized discontinuous Galerkin method for incompressible nonlinear elasticity
Journal
Advances in Computational Mathematics
Author(s)
Baroli D., Quarteroni A., Ruiz-Baier R.
ISSN-L
1019-7168
Publication state
Published
Issued date
2013
Peer-reviewed
Oui
Volume
39
Pages
425-443
Language
english
Abstract
In this paper we present a discontinuous Galerkin method applied to
incompressible nonlinear elastostatics in a total Lagrangian deformation-pressure
formulation, for which a suitable interior penalty stabilization
is applied. We prove that the proposed discrete formulation for the
linearized problem is well-posed, asymptotically consistent and that
it converges to the corresponding weak solution. The derived convergence
rates are optimal and further confirmed by a set of numerical examples
in two and three spatial dimensions.
Keywords
Nonlinear elasticity, Discontinuous Galerkin formulation, Incompressible, material, Edge-based stabilization, 65N30 , 65N12 , 74B20
Create date
25/11/2013 19:28
Last modification date
20/08/2019 14:21
Usage data