Prey fractionation in the Archaeocyatha and its implication for the ecology of the first animal reef systems

Details

Ressource 1Download: Antcliffe et al. 2019 Archaeocyath paleoecology postprint.pdf (37576.54 [Ko])
State: Public
Version: Author's accepted manuscript
License: CC BY-NC-ND 4.0
Serval ID
serval:BIB_5F50FC6E8ACB
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Prey fractionation in the Archaeocyatha and its implication for the ecology of the first animal reef systems
Journal
Paleobiology
Author(s)
Daley Allison, Antcliffe Jonathan, Jessop William
ISSN
0094-8373
1938-5331
Publication state
Published
Issued date
09/2019
Language
english
Abstract
<jats:title>Abstract</jats:title><jats:p>Archaeocyaths are the most abundant sponges from the Cambrian period, having formed the first animal reef communities more than 500 million years ago. The Archaeocyatha are index fossils for correlating rocks of similar ages globally because of their abundance, extensive geographic distribution, detailed anatomy, and well-established taxonomy. Their ecological significance remains incompletely explored, yet they are known to have strongly competitively interacted, unlike modern sponges. This study examines the feeding ecology of the fossil remains of Siberian archaeocyath assemblages. As suspension feeders, archaeocyaths filtered plankton from the water column through pores in their outer wall. Here we outline a new method to estimate the limit on the upper size of plankton that could be consumed by an archaeocyath during life. The archaeocyaths examined were predominantly feeding on nanoplankton and microplankton such as phytoplankton and protozooplankton. Size-frequency distributions of pore sizes from six different Siberian archaeocyath assemblages, ranging from Tommotian to Botoman in age, reveal significantly different upper limits to the prey consumed at each locality. Some of the assemblages contain specimens that could have fed on larger organisms extending into the mesoplankton, including micro-invertebrates as a possible food resource. These results show that during the establishment of the first animal reef systems, prey partitioning was established as a way of reducing competition. This method has applicability for understanding the construction and the functioning of the first reef systems, as well as helping to understand modern reef systems and their development though time and space.</jats:p>
Create date
12/03/2020 12:40
Last modification date
22/01/2021 7:24
Usage data