Metabolic Flux and Compartmentation Analysis in the Brain In vivo.

Details

Ressource 1Download: BIB_57C0069DFC20.P001.pdf (2613.10 [Ko])
State: Public
Version: author
Serval ID
serval:BIB_57C0069DFC20
Type
Article: article from journal or magazin.
Publication sub-type
Review (review): journal as complete as possible of one specific subject, written based on exhaustive analyses from published work.
Collection
Publications
Institution
Title
Metabolic Flux and Compartmentation Analysis in the Brain In vivo.
Journal
Frontiers in Endocrinology
Author(s)
Lanz B., Gruetter R., Duarte J.M.
ISSN
1664-2392 (Print)
ISSN-L
1664-2392
Publication state
Published
Issued date
2013
Peer-reviewed
Oui
Volume
4
Number
156
Pages
1-18
Language
english
Notes
Publication types: REVIEWPublication Status: epublish
Abstract
Through significant developments and progresses in the last two decades, in vivo localized nuclear magnetic resonance spectroscopy (MRS) became a method of choice to probe brain metabolic pathways in a non-invasive way. Beside the measurement of the total concentration of more than 20 metabolites, (1)H MRS can be used to quantify the dynamics of substrate transport across the blood-brain barrier by varying the plasma substrate level. On the other hand, (13)C MRS with the infusion of (13)C-enriched substrates enables the characterization of brain oxidative metabolism and neurotransmission by incorporation of (13)C in the different carbon positions of amino acid neurotransmitters. The quantitative determination of the biochemical reactions involved in these processes requires the use of appropriate metabolic models, whose level of details is strongly related to the amount of data accessible with in vivo MRS. In the present work, we present the different steps involved in the elaboration of a mathematical model of a given brain metabolic process and its application to the experimental data in order to extract quantitative brain metabolic rates. We review the recent advances in the localized measurement of brain glucose transport and compartmentalized brain energy metabolism, and how these reveal mechanistic details on glial support to glutamatergic and GABAergic neurons.
Keywords
neurotransmission,mathematical modeling,brain energy metabolism,MRS,neurotransmitter metabolism
Pubmed
Open Access
Yes
Create date
07/11/2013 8:20
Last modification date
20/08/2019 15:11
Usage data