Transcriptome-based polygenic score links depression-related corticolimbic gene expression changes to sex-specific brain morphology and depression risk.

Details

Serval ID
serval:BIB_57530AD548D2
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Transcriptome-based polygenic score links depression-related corticolimbic gene expression changes to sex-specific brain morphology and depression risk.
Journal
Neuropsychopharmacology
Author(s)
Miles A.E., Dos Santos F.C., Byrne E.M., Renteria M.E., McIntosh A.M., Adams M.J., Pistis G., Castelao E., Preisig M., Baune B.T., Schubert K.O., Lewis C.M., Jones L.A., Jones I., Uher R., Smoller J.W., Perlis R.H., Levinson D.F., Potash J.B., Weissman M.M., Shi J., Lewis G., Penninx BWJH, Boomsma D.I., Hamilton S.P., Sibille E., Hariri A.R., Nikolova Y.S.
Working group(s)
Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium
ISSN
1740-634X (Electronic)
ISSN-L
0893-133X
Publication state
Published
Issued date
12/2021
Peer-reviewed
Oui
Volume
46
Number
13
Pages
2304-2311
Language
english
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Abstract
Studies in post-mortem human brain tissue have associated major depressive disorder (MDD) with cortical transcriptomic changes, whose potential in vivo impact remains unexplored. To address this translational gap, we recently developed a transcriptome-based polygenic risk score (T-PRS) based on common functional variants capturing 'depression-like' shifts in cortical gene expression. Here, we used a non-clinical sample of young adults (n = 482, Duke Neurogenetics Study: 53% women; aged 19.8 ± 1.2 years) to map T-PRS onto brain morphology measures, including Freesurfer-derived subcortical volume, cortical thickness, surface area, and local gyrification index, as well as broad MDD risk, indexed by self-reported family history of depression. We conducted side-by-side comparisons with a PRS independently derived from a Psychiatric Genomics Consortium (PGC) MDD GWAS (PGC-PRS), and sought to link T-PRS with diagnosis and symptom severity directly in PGC-MDD participants (n = 29,340, 59% women; 12,923 MDD cases, 16,417 controls). T-PRS was associated with smaller amygdala volume in women (t = -3.478, p = 0.001) and lower prefrontal gyrification across sexes. In men, T-PRS was associated with hypergyrification in temporal and occipital regions. Prefrontal hypogyrification mediated a male-specific indirect link between T-PRS and familial depression (b = 0.005, p = 0.029). PGC-PRS was similarly associated with lower amygdala volume and cortical gyrification; however, both effects were male-specific and hypogyrification emerged in distinct parietal and temporo-occipital regions, unassociated with familial depression. In PGC-MDD, T-PRS did not predict diagnosis (OR = 1.007, 95% CI = [0.997-1.018]) but correlated with symptom severity in men (rho = 0.175, p = 7.957 × 10 <sup>-4</sup> ) in one cohort (N = 762, 48% men). Depression-like shifts in cortical gene expression have sex-specific effects on brain morphology and may contribute to broad depression vulnerability in men.
Keywords
Brain/diagnostic imaging, Depression/genetics, Depressive Disorder, Major/genetics, Female, Genetic Predisposition to Disease, Humans, Male, Multifactorial Inheritance, Transcriptome, Young Adult
Pubmed
Web of science
Create date
08/10/2021 17:02
Last modification date
07/12/2021 6:37
Usage data