Ultra-high-resolution 40 keV virtual monoenergetic imaging using spectral photon-counting CT in high-risk patients for coronary stenoses.
Details
Serval ID
serval:BIB_53DB72AB6426
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Ultra-high-resolution 40 keV virtual monoenergetic imaging using spectral photon-counting CT in high-risk patients for coronary stenoses.
Journal
European radiology
ISSN
1432-1084 (Electronic)
ISSN-L
0938-7994
Publication state
In Press
Peer-reviewed
Oui
Language
english
Notes
Publication types: Journal Article
Publication Status: aheadofprint
Publication Status: aheadofprint
Abstract
To assess the image quality of ultra-high-resolution (UHR) virtual monoenergetic images (VMIs) at 40 keV compared to 70 keV, using spectral photon-counting CT (SPCCT) and dual-layer dual-energy CT (DECT) for coronary computed tomography angiography (CCTA).
In this prospective IRB-approved study, 26 high-risk patients were included. CCTA was performed both with an SPCCT in UHR mode and with one of two DECT scanners (iQOn or CT7500) within 3 days. 40 keV and 70 keV VMIs were reconstructed for both modalities. Stenoses, blooming artefacts, and image quality were compared between all four reconstructions.
Twenty-six patients (4 women [15%]) and 28 coronary stenoses (mean stenosis of 56% ± 16%) were included. 40 keV SPCCT gave an overall higher quality score (5 [5, 5]) than 70 keV SPCCT (5 [4, 5], 40 keV DECT (4 [3, 4]) and 70 keV SPCCT (4 [4, 5]), p < 0.001). Less variability in stenosis measurement was found with SPCCT between 40 keV and 70 keV (bias: -1% ± 3%, LoA: 6%) compared with DECT (-6% ± 8%, LoA 16%). 40 keV SPCCT vs 40 keV DECT showed a -3% ± 6% bias, whereas 40 keV SPCCT vs 70 keV DECT showed a -8% ± 6% bias. From 70 keV to 40 keV, blooming artefacts did not increase with SPCCT (mean +2% ± 5%, p = 0.136) whereas they increased with DECT (mean +7% ± 6%, p = 0.005).
UHR 40 keV SPCCT VMIs outperformed 40 keV and 70 keV DECT VMIs for assessing coronary artery stenoses, with no impairment compared to 70 keV SPCCT VMIs.
Question Use of low virtual mono-energetic images at 40 keV using spectral dual-energy and photon-counting CT systems is not yet established for diagnosing coronary artery stenosis. Findings UHR 40 keV SPCCT enhances diagnostic accuracy in coronary artery assessment. Clinical relevance By combining spectral sensitivity with lower virtual mono-energetic imaging and ultra-high spatial resolution, SPCCT enhances coronary artery assessment, potentially leading to more accurate diagnoses and better patient outcomes in cardiovascular imaging.
In this prospective IRB-approved study, 26 high-risk patients were included. CCTA was performed both with an SPCCT in UHR mode and with one of two DECT scanners (iQOn or CT7500) within 3 days. 40 keV and 70 keV VMIs were reconstructed for both modalities. Stenoses, blooming artefacts, and image quality were compared between all four reconstructions.
Twenty-six patients (4 women [15%]) and 28 coronary stenoses (mean stenosis of 56% ± 16%) were included. 40 keV SPCCT gave an overall higher quality score (5 [5, 5]) than 70 keV SPCCT (5 [4, 5], 40 keV DECT (4 [3, 4]) and 70 keV SPCCT (4 [4, 5]), p < 0.001). Less variability in stenosis measurement was found with SPCCT between 40 keV and 70 keV (bias: -1% ± 3%, LoA: 6%) compared with DECT (-6% ± 8%, LoA 16%). 40 keV SPCCT vs 40 keV DECT showed a -3% ± 6% bias, whereas 40 keV SPCCT vs 70 keV DECT showed a -8% ± 6% bias. From 70 keV to 40 keV, blooming artefacts did not increase with SPCCT (mean +2% ± 5%, p = 0.136) whereas they increased with DECT (mean +7% ± 6%, p = 0.005).
UHR 40 keV SPCCT VMIs outperformed 40 keV and 70 keV DECT VMIs for assessing coronary artery stenoses, with no impairment compared to 70 keV SPCCT VMIs.
Question Use of low virtual mono-energetic images at 40 keV using spectral dual-energy and photon-counting CT systems is not yet established for diagnosing coronary artery stenosis. Findings UHR 40 keV SPCCT enhances diagnostic accuracy in coronary artery assessment. Clinical relevance By combining spectral sensitivity with lower virtual mono-energetic imaging and ultra-high spatial resolution, SPCCT enhances coronary artery assessment, potentially leading to more accurate diagnoses and better patient outcomes in cardiovascular imaging.
Keywords
Comparative study, Coronary arteries, Diagnosis, Image enhancement, Multidetector computed tomography
Pubmed
Web of science
Open Access
Yes
Create date
13/12/2024 14:38
Last modification date
21/01/2025 7:11