Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets.

Details

Serval ID
serval:BIB_509F32E759B0
Type
Article: article from journal or magazin.
Collection
Publications
Title
Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets.
Journal
Analytical Chemistry
Author(s)
Schaerli Y., Wootton R.C., Robinson T., Stein V., Dunsby C., Neil M.A., French P.M., Demello A.J., Abell C., Hollfelder F.
ISSN
1520-6882 (Electronic)
ISSN-L
0003-2700
Publication state
Published
Issued date
2009
Peer-reviewed
Oui
Volume
81
Number
1
Pages
302-306
Language
english
Abstract
We present a high throughput microfluidic device for continuous-flow polymerase chain reaction (PCR) in water-in-oil droplets of nanoliter volumes. The circular design of this device allows droplets to pass through alternating temperature zones and complete 34 cycles of PCR in only 17 min, avoiding temperature cycling of the entire device. The temperatures for the applied two-temperature PCR protocol can be adjusted according to requirements of template and primers. These temperatures were determined with fluorescence lifetime imaging (FLIM) inside the droplets, exploiting the temperature-dependent fluorescence lifetime of rhodamine B. The successful amplification of an 85 base-pair long template from four different start concentrations was demonstrated. Analysis of the product by gel-electrophoresis, sequencing, and real-time PCR showed that the amplification is specific and the amplification factors of up to 5 x 10(6)-fold are comparable to amplification factors obtained in a benchtop PCR machine. The high efficiency allows amplification from a single molecule of DNA per droplet. This device holds promise for convenient integration with other microfluidic devices and adds a critical missing component to the laboratory-on-a-chip toolkit.

Keywords
DNA/chemistry, DNA/genetics, Electrophoresis/methods, Fluorescent Dyes/chemistry, Microfluidic Analytical Techniques/instrumentation, Microfluidic Analytical Techniques/methods, Oils/chemistry, Polymerase Chain Reaction/instrumentation, Polymerase Chain Reaction/methods, Polymethyl Methacrylate/chemistry, Rhodamines/chemistry, Temperature, Water/chemistry
Pubmed
Web of science
Create date
02/02/2017 9:15
Last modification date
20/08/2019 15:06
Usage data