Activity-dependent regulation of energy metabolism by astrocytes: an update.
Details
Serval ID
serval:BIB_507BA446FCDD
Type
Article: article from journal or magazin.
Publication sub-type
Review (review): journal as complete as possible of one specific subject, written based on exhaustive analyses from published work.
Collection
Publications
Institution
Title
Activity-dependent regulation of energy metabolism by astrocytes: an update.
Journal
Glia
ISSN
0894-1491
Publication state
Published
Issued date
2007
Peer-reviewed
Oui
Volume
55
Number
12
Pages
1251-62
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't ; Review - Publication Status: ppublish
Abstract
Astrocytes play a critical role in the regulation of brain metabolic responses to activity. One detailed mechanism proposed to describe the role of astrocytes in some of these responses has come to be known as the astrocyte-neuron lactate shuttle hypothesis (ANLSH). Although controversial, the original concept of a coupling mechanism between neuronal activity and glucose utilization that involves an activation of aerobic glycolysis in astrocytes and lactate consumption by neurons provides a heuristically valid framework for experimental studies. In this context, it is necessary to provide a survey of recent developments and data pertaining to this model. Thus, here, we review very recent experimental evidence as well as theoretical arguments strongly supporting the original model and in some cases extending it. Aspects revisited include the existence of glutamate-induced glycolysis in astrocytes in vitro, ex vivo, and in vivo, lactate as a preferential oxidative substrate for neurons, and the notion of net lactate transfer between astrocytes and neurons in vivo. Inclusion of a role for glycogen in the ANLSH is discussed in the light of a possible extension of the astrocyte-neuron lactate shuttle (ANLS) concept rather than as a competing hypothesis. New perspectives offered by the application of this concept include a better understanding of the basis of signals used in functional brain imaging, a role for neuron-glia metabolic interactions in glucose sensing and diabetes, as well as novel strategies to develop therapies against neurodegenerative diseases based upon improving astrocyte-neuron coupled energetics.
Keywords
Aerobiosis, Animals, Astrocytes, Cells, Cultured, Energy Metabolism, Glutamic Acid, Glycolysis, Humans, Lactic Acid, Models, Statistical, Neurons
Pubmed
Web of science
Create date
24/01/2008 13:16
Last modification date
20/08/2019 14:06