Mechanisms of angiogenesis impairment by radiation therapy


Request a copy
Serval ID
PhD thesis: a PhD thesis.
Mechanisms of angiogenesis impairment by radiation therapy
Imaizumi N.
Rüegg C.
Institution details
Université de Lausanne, Faculté de biologie et médecine
Faculté de biologie et de médecine Université de Lausanne UNIL - Bugnon Rue du Bugnon 21 - bureau 4111 CH-1015 Lausanne SUISSE
Publication state
Issued date
Number of pages
REROID:R004855836 ill.
Summary :
Clinical evidence indicates that tumors recurring within previously irradiated fields are highly invasive and metastatic, suggesting a role of the tumor stroma in this effect. Angiogenesis plays a critical role in tumor progression. Ionizing radiation is known to induce apoptosis of angiogenic endothelial cells, while the effect on quiescent endothelial cells and de novo angiogenesis is not well characterized. We recently observed that irradiation of normal tissue prevents tumor- and growth factor-induced angiogenesis. The main aim of my thesis work was to characterize the mechanisms of radiation-mediated inhibition of angiogenesis.
To this purpose we used a combination of in vivo and ex vivo studies on irradiated healthy tissue, and in vitro irradiation experiments using angiogenesis models and isolated endothelial cells.
We found that irradiation did not induce endothelial cell apoptosis and did not disrupt quiescent vessels within irradiated skin. Radiation reduced the recruitment of leukocytes to angiogenic Matrigel plugs, but this effect was rather secondary to decreased angiogenesis, as exogenous addition of leucocytes to Matrigel plugs did not rescue the angiogenesis defects. To ascertain the direct effect of radiation on endothelial cells, we used the mouse aortic ring assay to test the sprouting capacity of irradiated endothelial cells ex vivo and in vitro, and found that irradiation completely suppressed endothelial cell sprouting. Using HUVEC cells, we showed that irradiation of quiescent confluent endothelial cells did not induce cell death but suppressed subsequent migration and cell proliferation and induced senescence. By Western blotting, we observed a rapid and sustained increase in p21 levels, previously shown to be activated by p53 in response to double strand break, and mediating senescence in human cells. Current experiments focus on the mechanism of sustained p21 upregulation and its role in reduced migration. Inhibition of endothelial cell migration and proliferation by radiation may explain reduced angiogenesis in tumors growing in previously irradiated fields.
Create date
22/06/2010 15:15
Last modification date
20/08/2019 14:56
Usage data