Wounding-Induced Stomatal Closure Requires Jasmonate-Mediated Activation of GORK K<sup>+</sup> Channels by a Ca<sup>2+</sup> Sensor-Kinase CBL1-CIPK5 Complex.

Details

Serval ID
serval:BIB_4091EBE798AC
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Wounding-Induced Stomatal Closure Requires Jasmonate-Mediated Activation of GORK K<sup>+</sup> Channels by a Ca<sup>2+</sup> Sensor-Kinase CBL1-CIPK5 Complex.
Journal
Developmental Cell
Author(s)
Förster S., Schmidt L.K., Kopic E., Anschütz U., Huang S., Schlücking K., Köster P., Waadt R., Larrieu A., Batistič O., Rodriguez P.L., Grill E., Kudla J., Becker D.
ISSN
1878-1551 (Electronic)
ISSN-L
1534-5807
Publication state
Published
Issued date
2019
Peer-reviewed
Oui
Volume
48
Number
1
Pages
87-99.e6
Language
english
Abstract
Guard cells integrate various hormone signals and environmental cues to balance plant gas exchange and transpiration. The wounding-associated hormone jasmonic acid (JA) and the drought hormone abscisic acid (ABA) both trigger stomatal closure. In contrast to ABA however, the molecular mechanisms of JA-induced stomatal closure have remained largely elusive. Here, we identify a fast signaling pathway for JA targeting the K <sup>+</sup> efflux channel GORK. Wounding triggers both local and systemic stomatal closure by activation of the JA signaling cascade followed by GORK phosphorylation and activation through CBL1-CIPK5 Ca <sup>2+</sup> sensor-kinase complexes. GORK activation strictly depends on plasma membrane targeting and Ca <sup>2+</sup> binding of CBL1-CIPK5 complexes. Accordingly, in gork, cbl1, and cipk5 mutants, JA-induced stomatal closure is specifically abolished. The ABA-coreceptor ABI2 counteracts CBL1-CIPK5-dependent GORK activation. Hence, JA-induced Ca <sup>2+</sup> signaling in response to biotic stress converges with the ABA-mediated drought stress pathway to facilitate GORK-mediated stomatal closure upon wounding.
Keywords
abscisic acid, arabidopsis, calcium, guard cell, jasmonic acid, kinase, patch-clamp, phosphorylation, potassium channel, wounding
Pubmed
Web of science
Create date
17/01/2019 14:35
Last modification date
20/08/2019 13:39
Usage data