Variability of 24-Hour Sodium Urinary Excretion in Young Healthy Males Based on Consecutive Urine Collections: Impact on Categorization of Salt Intake.
Details
Serval ID
serval:BIB_39314F6C786C
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Variability of 24-Hour Sodium Urinary Excretion in Young Healthy Males Based on Consecutive Urine Collections: Impact on Categorization of Salt Intake.
Journal
Journal of renal nutrition
ISSN
1532-8503 (Electronic)
ISSN-L
1051-2276
Publication state
Published
Issued date
05/2023
Peer-reviewed
Oui
Volume
33
Number
3
Pages
450-455
Language
english
Notes
Publication types: Journal Article ; Randomized Controlled Trial ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Publication Status: ppublish
Abstract
Several nonconsecutive 24-h urinary collections are considered the gold standard for estimating dietary salt intake. As those samples are logistically demanding, we aimed to describe the variability of 24-h sodium urinary excretion over consecutive days and report its adequacy with sodium intake.
We enrolled 16 healthy male volunteers in a prospective controlled study. All participants randomly received a low salt diet (LSD) (3 g/day of NaCl), a normal salt diet (NSD) (6 g/day of NaCl), and a high salt diet (HSD) (15 g/day of NaCl) for 7 days in a crossover design without wash-out period.
On day 6, median sodium urinary excretion was 258 (216-338), 10 (8-18), and 87 (69-121) mmol/day for HSD, LSD, and NSD, respectively (P < .001). When considering days 4-6, sodium urinary excretion was in steady state as models with and without interaction term "diet type X sample day" were not significantly different (P = .163). On day 6, area under the curve (AUC) of receiver operating characteristic for urinary sodium excretion to detect HSD was 1.0 (1.0-1.0) and a cut-point of 175 mmol/day was 100% sensitive and specific to detect HSD. On day 6, receiver operating characteristic AUC to detect LSD was 0.993 (0.978-1.0) and a cut-point of 53 mmol/day was 96.4% sensitive and 100% specific to detect LSD.
A steady state of sodium balance, where sodium intake is proportional to its excretion, is reached within a few days under a constant diet in the real-life setting. Categorization of salt consumption into low (3 g/day), normal (6 g/day), or high (15 g/day) based on a single 24-h urine collection is nearly perfect. Based on these results, repeated nonconsecutive urine collection might prove unnecessary to estimate sodium intake in daily clinical practice provided that diet is rather constant over time.
We enrolled 16 healthy male volunteers in a prospective controlled study. All participants randomly received a low salt diet (LSD) (3 g/day of NaCl), a normal salt diet (NSD) (6 g/day of NaCl), and a high salt diet (HSD) (15 g/day of NaCl) for 7 days in a crossover design without wash-out period.
On day 6, median sodium urinary excretion was 258 (216-338), 10 (8-18), and 87 (69-121) mmol/day for HSD, LSD, and NSD, respectively (P < .001). When considering days 4-6, sodium urinary excretion was in steady state as models with and without interaction term "diet type X sample day" were not significantly different (P = .163). On day 6, area under the curve (AUC) of receiver operating characteristic for urinary sodium excretion to detect HSD was 1.0 (1.0-1.0) and a cut-point of 175 mmol/day was 100% sensitive and specific to detect HSD. On day 6, receiver operating characteristic AUC to detect LSD was 0.993 (0.978-1.0) and a cut-point of 53 mmol/day was 96.4% sensitive and 100% specific to detect LSD.
A steady state of sodium balance, where sodium intake is proportional to its excretion, is reached within a few days under a constant diet in the real-life setting. Categorization of salt consumption into low (3 g/day), normal (6 g/day), or high (15 g/day) based on a single 24-h urine collection is nearly perfect. Based on these results, repeated nonconsecutive urine collection might prove unnecessary to estimate sodium intake in daily clinical practice provided that diet is rather constant over time.
Keywords
Humans, Male, Prospective Studies, Sodium/urine, Sodium Chloride, Sodium Chloride, Dietary/urine, Sodium, Dietary, Urine Specimen Collection, collection, excretion, intake, salt, sodium
Pubmed
Web of science
Create date
03/03/2023 16:44
Last modification date
11/07/2023 5:56