Global distribution modelling of a conspicuous Gondwanian soil protist reveals latitudinal dispersal limitation and range contraction in response to climate warming
Details
Serval ID
serval:BIB_387EC9305054
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Global distribution modelling of a conspicuous Gondwanian soil protist reveals latitudinal dispersal limitation and range contraction in response to climate warming
Journal
Diversity and Distributions
ISSN
1366-9516
1472-4642
1472-4642
Publication state
Published
Issued date
02/2024
Peer-reviewed
Oui
Volume
30
Number
2
Pages
e13779
Language
english
Abstract
Aim
The diversity and distribution of soil microorganisms and their potential for long-distance dispersal (LDD)are poorly documented, making the threats posed by climate change difficult to assess. If microorganisms do not disperse globally, regional endemism may develop and extinction may occur due to environmental changes. Here, we addressed this question using the testate amoeba Apodera vas, a morphologically conspicuous model soil microorganism in microbial biogeography, commonly found in peatlands and forests mainly of former Gondwana. We first wanted to document its distribution. We next wanted to assess whether its distribution could be explained by dispersal (i.e., matching its climatic niche) or vicariance (i.e., palaeogeography), based on the magnitude of potential range expansions or contractions in response to past and on-going climatic changes. Last, we wanted to assess the likelihood of cryptic diversity and its potential threat from climate and land-use changes (e.g., due to limited LDD).
Location
Documented records: Southern Hemisphere and inter-tropical zone; modelling: Global.
Methods
We first built an updated global distribution map of A. vas using 401 validated georeferenced records. We next used these data to develop a climatic niche model to predict its past (LGM, i.e., 21 3 ka BP; PMIP3 IPSL-CM5A-LR), present, and future (IPSL-CMP6A-LR predictions for 2071-2100, SSP3 and 5) potential distributions in responses to climate, by relating the species occurrences to climatic and topographic predictors. We then used these predictions to test our hypotheses (dispersal/vicariance, cryptic diversity, future threat from LDD limitation).
Results
Our models show that favourable climatic conditions for A. vas currently exist in the British Isles, an especially well-studied region for testate amoebae where this species has never been found. This demonstrates a lack of inter-hemispheric LDD, congruent with the palaeogeography (vicariance) hypothesis. Longitudinal LDD is however confirmed by the presence of A. vas in isolated and geologically young peri-Antarctic islands. Potential distribution maps for past, current, and future climates show favourable climatic conditions existing on parts of all southern continents, with shifts to higher land from LGM to current in the tropics and a strong range contraction from current to future (global warming IPSL-CM6A-LR scenario for 2071-2100, SSP3.70 and SSP5.85) with favourable conditions developing on the Antarctic Peninsula.
Main conclusions
This study illustrates the value of climate niche models for research on microbial diversity and biogeography, along with exploring the role played by historical factors and dispersal limitation in shaping microbial biogeography. We assess the discrepancy between latitudinal and longitudinal LDD for A. vas, which is possibly due to contrast in wind patterns and/or likelihood of transport by birds. Our models also suggest that climate change may lead to regional extinction of terrestrial microscopic organisms, thus illustrating the pertinence of including microorganisms in biodiversity conservation research and actions.
The diversity and distribution of soil microorganisms and their potential for long-distance dispersal (LDD)are poorly documented, making the threats posed by climate change difficult to assess. If microorganisms do not disperse globally, regional endemism may develop and extinction may occur due to environmental changes. Here, we addressed this question using the testate amoeba Apodera vas, a morphologically conspicuous model soil microorganism in microbial biogeography, commonly found in peatlands and forests mainly of former Gondwana. We first wanted to document its distribution. We next wanted to assess whether its distribution could be explained by dispersal (i.e., matching its climatic niche) or vicariance (i.e., palaeogeography), based on the magnitude of potential range expansions or contractions in response to past and on-going climatic changes. Last, we wanted to assess the likelihood of cryptic diversity and its potential threat from climate and land-use changes (e.g., due to limited LDD).
Location
Documented records: Southern Hemisphere and inter-tropical zone; modelling: Global.
Methods
We first built an updated global distribution map of A. vas using 401 validated georeferenced records. We next used these data to develop a climatic niche model to predict its past (LGM, i.e., 21 3 ka BP; PMIP3 IPSL-CM5A-LR), present, and future (IPSL-CMP6A-LR predictions for 2071-2100, SSP3 and 5) potential distributions in responses to climate, by relating the species occurrences to climatic and topographic predictors. We then used these predictions to test our hypotheses (dispersal/vicariance, cryptic diversity, future threat from LDD limitation).
Results
Our models show that favourable climatic conditions for A. vas currently exist in the British Isles, an especially well-studied region for testate amoebae where this species has never been found. This demonstrates a lack of inter-hemispheric LDD, congruent with the palaeogeography (vicariance) hypothesis. Longitudinal LDD is however confirmed by the presence of A. vas in isolated and geologically young peri-Antarctic islands. Potential distribution maps for past, current, and future climates show favourable climatic conditions existing on parts of all southern continents, with shifts to higher land from LGM to current in the tropics and a strong range contraction from current to future (global warming IPSL-CM6A-LR scenario for 2071-2100, SSP3.70 and SSP5.85) with favourable conditions developing on the Antarctic Peninsula.
Main conclusions
This study illustrates the value of climate niche models for research on microbial diversity and biogeography, along with exploring the role played by historical factors and dispersal limitation in shaping microbial biogeography. We assess the discrepancy between latitudinal and longitudinal LDD for A. vas, which is possibly due to contrast in wind patterns and/or likelihood of transport by birds. Our models also suggest that climate change may lead to regional extinction of terrestrial microscopic organisms, thus illustrating the pertinence of including microorganisms in biodiversity conservation research and actions.
Keywords
Apodera vas, climate change, conservation biogeography, cosmopolitanism, endemism, free-living protists, Gondwana, microbial biogeography, palaeogeography, soil biodiversity, species distribution modelling, testate amoebae
Web of science
Open Access
Yes
Funding(s)
Swiss National Science Foundation
Create date
16/09/2023 14:11
Last modification date
30/01/2024 8:19