Microparticles from stored red blood cells induce thrombin generation


Serval ID
Inproceedings: an article in a conference proceedings.
Publication sub-type
Abstract (Abstract): shot summary in a article that contain essentials elements presented during a scientific conference, lecture or from a poster.
Microparticles from stored red blood cells induce thrombin generation
Title of the conference
32nd International Congress of the International Society of Blood Transfusion in joint cooperation with the 10th Congress of AMMTAC
Rubin O., Lion N., Angelillo-Scherrer A., Tiisot J.D.
Cancun, Mexico, July 7-12, 2012
Publication state
Issued date
Vox Sanguinis
Background: Microparticles are small phospholipid vesicles of <1 lm shed in blood flow by various cell types including red blood cells. Erythrocyte-derived microparticles (EMPs) accumulate in erythrocyte concentrates (ECs) during their storage time. EMPs are considered as part of storage lesion and as their exact role is not elucidated, they could be involved in these clinical outcomes. Aims: The aim of this study is to evaluate the impact and implication of EMPs isolate from ECs on coagulation. Methods: EMPs were first isolated from erythrocyte concentrates by centrifugation and counted by flow cytometry. Using a calibrated automated thrombogram, EMPs were then added to different type of plasmas in order to evaluate the potential of thrombin generation. Results: We demonstrate that EMPs isolated from ECs are capable to accelerate and amplify thrombin generation in presence of a low exogenous tissue factor concentration, thanks to their negatively charged membrane necessary for the assembly of coagulation complexes. Interestingly, in the absence of exogenous tissue factor, EMPs are also able to trigger thrombin generation. In addition, thrombin generation induced by EMPs is not affected by the presence of anti-TF antibodies. Finally, thrombin generation induced by EMPs is not affected by using plasma samples deficient in factor VII, XI or XII. However, thrombin generation is reduced in plasma deficient in factor VIII or IX and is completely abolished in plasma deficient in factor X, V or II. No thrombin generation was observed in plasma samples without EMPs. Summary/conclusion: Several studies have shown a link between storage time of blood products and post transfusion complications. We provide evidence that EMPs accumulated during storage of erythrocyte concentrates were not only able to accelerate and support thrombin generation in plasma in presence of a low exogenous tissue-factor concentration, but also to trigger thrombin generation in absence of exogenous TF. The impact of those transfused EMs is unknown on recipients, nevertheless it could be hypothesized that under certain circumstances, transfused EMPs could be involved in thrombin generation and could be linked to adverse clinical outcome. Further work is needed to determine whether procoagulant EMPs transfused with erythrocyte concentrate may account for some of the complications occurring after red blood cell transfusion, and more particularly after transfusion of ''older''stored blood, rich in EMPs.
Web of science
Create date
09/11/2014 23:16
Last modification date
20/08/2019 13:24
Usage data